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Chapter 1 X

Introduction

1.1. Research Contribution

This dissertation describes a programming language notion -- phases -- and an associated
programming method. Its contribution is both practical and academic: it takes a small step toward
providing a strongly typed language basis for more reusable software; and it provides a more geperal,
unified view of certain notions in programming languages and methodology, including compiletime
and runtime.

This work is not advocating any particular programming language or method. The main intent of
this dissertation is to expose the essence of muldple strongly typed evaluation phases, without
encumbering the reader with extraneous details or tangential issues. We illustrate the essential ideas by
defining some pedagogical languages based on the Lambda Calculus [Barendregt 84]: Phi and IL. As

of this writing, two versions of these languages have been implemented and tested.

1.1.1. Ideas in This Research

It is often difficult, in reading research reports. to distill the important ideas being advocated from
the mundane details of the particular system described. Qutlined below are what the author considers

1o be the most interesting ideas embodied in this research.

I.1.1.1. An Abstract Data Type for Type-checked Program Fragments

A particular abstract data type (the data type ERT) is defined for constructing and manipulating

tvpe-checked programs. This allows program fragments to be securely manipulated as data, and thus

allows compiletime operations to be treated in the same manner as runtime operations. The primiuve

.

operations implementing this data type ensure that everv program constructed in this way is "‘-“':.\'
e
‘ . Ay
svntactically correct and strongly typed. (Section 2.2.1) sf.\"
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1.1.1.2. One Machine Acts as Compiler and Runtime Machine

Notions of compiletime and runtime are unified: compiletime operations are generalized and
become a superset of runtime operations. A single abstract machine can do both efficientlv. (Section
312)

1.1.1.3. Multiple Strongly Typed Evaluation Phases

Each phase is the execution of a program on the abstract machine. The result of each phase may be
the final answer or another type-checked program. Each phase type checks and generates the program
for the next phase. Tvpes may be manipulated as firstclass values during any phase: they become
invariants for the next phase. "Compiletime” and "runtime” thus become relative terms. (Sections 3.2
and 3.3.)

1.1.1.4. The Traaslator Does No Type Checking

Given a program in the source Janguage, the translator can produce a surongly typed program in the
implementation language without doing any tvpe checking. That is. the translator does no type
checking, but the resulung program is guaranteed free of runtime tvpe errors, This fact may at first

sound contradictory; it is explained in Section 3.3.3.
1.1.1.5. One Machine Does Partial and Full Evaluation

A single abstract machine can efficiently do both partial evaluation and full evaluation. (Chapter 5.)
1.1.1.6. Phase Compilation

Chapter S discusses how phases might be used for parual evaluation for a strongly twped language.
Partial evaluation is often slow. but it might be made more efficient by using two steps:  phase

compilation and phase evaluation.

Given a list of the free variables to be gien fixed 1alues. 2 phase comp:ler would prepare a program

for phase evaluation. which will achieve the cffect of efficient parual/full evaluation. The program : 1
would first be “phase compiled.” using a hst of the free vanables -- and their types -- 10 be instantiated. :::j
Efficient partial/full evaluation would then be performed by executing this “phase compiled” program ‘afn
using phase evaluation. (Section 5.4.) !
N
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1.1.1.7. An Unusual View of Abstract Data Types S
A
Since types and code are first-class values, our view of Abstract Data Types (ADTs) is in terms of il
what primitive functions are necessarv in order to support user-defined ADTs. Operationally, one :
needs these functions in order to convert between the domains of the abstraction and the ::';_
- LN
representation. However, they can be ordinary functions rather than special language constructs. BN
“»
(Section 6.1.)
'l
',.\
. Caiyd
1.2. Background to This Research ey
Y
Programming language experts should read the definitions of "runtime type errors” and “strong A0
typing” in Sections 1.2.1.1 and 1.2.1.2, but may otherwise wish to skip to Section 1.3, which describes S
this research. ‘:'_-'
-
N
. . *
1.2.1. Two Models of Program Evaluation: Interpreted and Compiled L
o
Figure 1-1 shows two models of how a source program written in some language L might be l.j-'i;‘
e
evaluated. o
o
e
In the inrerpreted case. the program is given directly to an interpreter. A program generallyv also ,‘
\ &
needs a specified environment. which might include values for the program’s input variables and 5 :
~
definitions of some standard functions. The interpreter runs the program with the given environment r:
r
and produces the desired result of the computation -- the final answer. which might be some number. a I X
character string. or a more complex object such as a file. ,
AN
A
N
In the compiled case. the source program is first translated. by a compiler. into an object program in "’:
some other language L'; this step is called compilerime. An L' interpreter then runs the object program oy
)
with the desired environment to produce the final answer: this step is called runiime. The object
program may be stored and run repeatedly using different environments or inputs. without re- :j:f:
S
translating the source program. e
This work concerns the compiled. rather than the interpreted. model. ol
e
o
_'.
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Figure 1-1:
Two Models of Program Evaluation

Source Source
Program Program

!

Compiler | Compiletime

Environment
(Input)

v & 0

Interpreter object
program
Environment
\l, /(Input)
Runtime Runtim
Machine ©
final-answer final-answer
Interpreted Compiled
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1.2.1.1. Definition: Runtime Type Errors i

[) ?: ‘: s

Suppose the source program contains a mistake, causing the L interpreter (in the interpreted case) or —

the L’ interpreter (in the compiled case) to try to apply some erroneous operation, such as multiplying \;.':,;

two character swings. It may be detected by the interpreter. and an efror message issued, or it may not ,::::‘

be detected, in which case the result of the computation will be garbage. In either case, it is called a :;:’41

R

i runtime type error to distinguish it from any errors that the compiler might issue before the program is S
| executed. -,

* .

| 1.2.1.2. Definition: Strong Typing f“

If the source program contains adequate information about the types of values to be computed. the
compiler can ensure that the generated object program will be free of runtime type errors. Strong

it
N
L]
{ typing means providing an a priori, or compiletime, guarantee against runtime type errors.! ’ '%?:
| S 'i‘ !
. . g . A
This work concerns only languages providing strong typing. :
0L
epe =
1.2.2. The Purposes of Compiling 19548
o
There are two basic advantages to compiling the source program, as opposed 0 interpreting it
directly: type security and efficiency. .
-
Type security Because the source language is strongly typed, the compiler can provide an a priori :::
guarantee that no runtime type errors will occur when the object program is ‘::I
executed on the implementation machine. This provides an assurance that the N
program is at least partially correct, without executing the program. SR
oy
Efficiency A compiler can improve a program'’s runtime efficiency in three wavs: by computing 20X
constant expressions at compiletime: by selecting optimal object program code. g.."@t
based on values and types known at compiletime; and by translating the program :sﬁx
o
A
AN !
1‘!‘.1e quesuon sometimes anses: Is division by zero considered a runume type error” What about an array index out of .:: (]
bounds” Or an attempt to read bevond the end of the input? :‘\ :
K f
Paul Eggert (Eggert 81] has shown that 1t 1s possible to define the type system securely enough that such runume errors are not 4 \*"
potxitie  For example. one @an define 2 npe non-zero-iategers ot includes al! integers except ero. and another npe
possibly - zero-integers that includes all integers. Onlv values of the 1y pe nor-2ero-integers would be allowed as d:visors. and (for
examplc) subt-action of two nom-zerc-integers would yield a result of t/pe possibly-zero-integers. To convent a ‘alue of npe
possibly-zero-integers 10 3 value of type nom-zero-iategers. one must use a special case-conforruty clause. placang the detecuon of
a 2ero value under expliat program control. The type s stem can similarly be defined in such a way that armav-index-out-of*
bounds and other such efrors are not possible. Although man: ianguages that purport (0 be strongly tvped. such as Pascal aliow
such loophoies i1n the type system, this work assumes that the npe sysiem s defined securely enough that such runume errors are
not possible.
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into a language inherently more efficient for the implementation machine to

execute.?

1.2.3. Problems with Traditional Compiled Languages

The benefits of compiling are well established, and languages specifically designed to be compiled --
compiled languages -- are common. In spite of these advantages, there are some problems with
traditional compiled languages.

1.2.3.1. Lack of Programmer Control

Inherently, the compiler must know a great deal about the source program and the types of values
being manipulated in order to produce an efficient, type-checked object program. However, the
programmer generally does not have access to much of this compiletime information.

For example, in Pascal, there is no way to ask for the size of an array or for the first value of an
enumerated type.3 Certainly the compiler has this information, but the programmer has no way of

accessing it.
1.2.3.2. Ad Hoc Notions

It is easy to see similarities between the kinds of operations performed by the compiler at
compiletime. and the operations performed under program control at runtime. In spite of the
conceptual similarities. compiletime notions tend to be ad hoc. For example, the shortcomings of
Pascal mentioned above were addressed in Ada® by supplying aitribute operations, which ask for an
arTay’'s size or an enumerated type’s first value. The Ada Reference Manual [Ada 82] defines 48 such

attributes! Some of these attributes are computable at compiletime and some are not.

Tvpe expressions are usually treated verv differently from other -- conventional -- expressions, such
as numeric expressions. In fact. they usually have different syntactic rules. Consider Pascal. One can

define & variable x to be some user-defined tvpe r: )
var x: t; { t is some user-defined type )

Or one can declare x using an array type expression involving r:

)
“This turd method of mproving efficiency will be 1ignored when we gencrzlize compiieume 10 arnve at the nouon of phases
However the 1dea of translating to a more efficient language s not incompatble with the notion of phases Instead of execuung
an Implementanon Language program directly, we could first transiate 1t to another more efficiently executed language
3!\n enumerated type 1s a type for which all values are expliciuy listed. for example, type color = (red. green. blue).

*hdana regisiered trademark of the U.S Government. Ada Joint Program Office
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var x: array [1..20] of t;

However, one cannot compute an arbitrary function of «:
var x: f(t); { Illegal }

To various extents, some languages, such as Donahue’s Extended Lambda Calculus [Donahue 79},
Russell [Boehm 80). EL1 [Wegbreit 74] and Pebble [Burstall 84], do treat types as first-class values; that
is, one may use type variables and write functions and expressions involving types. However, these
languages tend to syntactically separate type expressions from normal expressions, restrict the kinds of
computations allowed on types to ensure that the type values are statically computable, or forego
strong typing and use runtime type checking. Pebble’s treatment of types is general and uniform in
these respects. but it does treat one aspect of tvpes differently, as mentioned in Section 1.2.34.

1.2.3.3. The Conflict Between "Strong Typing” and "Tvpes as First-Class Values” o

The motivation for allowing types as first-class values is clear: the abilities 1o parameterize by tvpes.
use arbitrary algorithms to construct new types. and make decisions based on types. would support
more reusable software. Similarly. the benefits of strong typing are well established: type security and Sa

efficiency.

Unfortunately, there is an inherent conflict between allowing types as first class values and the desire
for strong typing. Basically, strong typing requires that the type of every expression be known before
runtime. However. allowing types as first-class values means that types may involve arbitrary

expressions. use variables, invoke functions, depend on input, etc.

1.2.3.4. Different Mechanisms for Type Checking and Evaluation

Tvpe checking is similar to program evaluation. The similarity is readilv apparent when one
compares a typical language’s semantic rules for type checking with its semantic rules for evaluation:
both draw conclusions about an expression’s value or type based on the values or types of the

expression’s subexpressions. and both follow lexical scoping rules for identifiers.

Nonetheless. strongly typed languages have invariably defined separate mechanisms for type
checking and program evaluation. For example. even in Burstall and Lampson's Pebble [Burstall 84},
though type checking involves evaluation. a different mechanism is used for type checking than for
evaluation. This is shown clearly in Table 6. Section 5.3 of Pebble [Burstall 84), where the tvpe y
checking rules are separated from the evaluation rules to form what is essentially a different machine. DY,

(The rules are separated to demonstrate the distinction between the act of tvpe checking and the act of
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b
evaluation.) Both sets of rules apply to the same language constructs, but they are applied at different ' *
times, depending on whether the program is being type checked or executed. p $¢_,'

!

1.3. This Research

| * ‘
| >
L4t

L3

| Can types and code be manipulated effectively under programmer control during compiletime, while
retaining strong typing? Can compiletime notions such as type checking be unified with runtime
notions?

The answer is "Yes." The language notion of multiple strongly {yped evaiuation phasesj unifies

compiletime and runtime, and allows types and code to be manipulated as first-class values, while

retaining strong typing. Types, manipulated as first-class values in one phase, become invariants of the N
next phase, as explained in Section 3.3.2. Phases might also be used to perform partial evaluation, as :
discussed in Section 5. The purpose of this work is to explore and introduce the notion of multiple :’"
strongly typed evaluation phascs.6
Our particular approach to type checking was motivated by certain key biases; - ;;g

- A firm belief in strong typing, that is, in providing an a priori guarantee that a program is ;‘-:

free of any possible runtime tvpe errors.

|12

- A desire to unify the notions of compiletime and runtime.

-

4
2,

oy

(S

'If
(LR

- An orientation toward explicit programmer expression rather than inference performed by
the language implementation. These orientations are contrasted in Section 1.3.1.

-
»
oy

1

- A desire to support the general programming method described in Section 2.1.

5 . N )
“The term plases is often used in this work instead of the longer, more descnpine term mulnpie strongly ryped evaluation
phases

bThxs work was approached a littie differenty than most doctorai research. Rather than first carefully defining a probiem and
then seeking a solution, we pursued an interesting icea and developed it 10 see how i might be useful This unusual approach i
nsky. because there is less assurance of a useful outcome, and it places a greater burden on the researcher for scholarly review
and ntegration of related work. Nonetheless, this approach should be encouraged much more The traditonal approach of
defining a problem and then seeking a solution 15 contran to creauvity. because even problem defimtion presupposes a cenain
view of the world The most interesting and innovative developments are those that change one's view of the world. making
protlems irrelevart instead of solving them.
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1.3.1. Expressing versus Inferring

Programming languages are designed under two competing orientations: the programmer can
express information, or the language implementation can infer the information. The Phi language
described in Section 4.1 is strongly oriented toward expressing rather than inferring. This section
explains this choice and the differences between the two orientations.

For example, rather than requiring the compiler to infer the type of an expression from its context, in
Phi the type is simply computed as any other computation. Another example of this distinction is that
type checking polymorphic functions in ML [Gordon 79] involves unification, a process of pattern
martching to find the most general type solution. If the same kind of polymorphic functions were
offered in a language oriented toward programmer expression. the programmer would have the
responsibility of expressing the desired type solution. and the language should provide useful ‘type
operations to make this easy. This is like the difference between proof checking and proof discovery.

1.3.1.1. Advantages of Inference over Expression

The main argument for having the compiler infer whatever it can is that it reduces the burden on the
programmer. This is a good argument, but it is not prima-facie evidence that compiler inference is
preferable 10 language expressiveness. It does, however. point out that ease of expression is \ery
important. Concise syntactic constructs and libraries of reusable components should be provided to

make expression easy.

Another argument for having the compiler infer information is that the inferences are assured correct
(assuming that the compiler is correct, and that the programmer understands the inferences). If the
programmer is given the responsioility of computing the tvpes of expressions. for example. it is
conceivable that the programmer would occasionally make a mistake and compute the wrong type.
thus allowing an operation 10 be applied erroneously. In this case (to ensure strong tvping). if the
programmer is allowed to compute types arbitrarily. it is clear that the compiler must have some wa\ of

verifving that any computed types are in fact legal.

1.3.1.2. Disadvantages of Inference as Opposed to Expression

Onc disadvantage of relying on the compiler to infer information is that the comptler must be more
complex. Thus. compilation may involve such tasks as unification or solving systems of simultaneous

equations.
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Perhaps the most important disadvantage, though, is that the programmer may want o express
things that the compiler is not capable of inferring. This may be viewed as both a theoretical and a
practical problem. As a simple example of the theoretical difficulty. suppose that every expression in
the language must be guaranteed to halt, and that this is considered part of the expression’s type
correctness. The halting problem shows that this is theoretically impossible for the compiler to0
algorithmically determine, however, a compiler could much more easily verify a proof supplied by the
programmer. As another example of the theoretical difficulty, Coppo {[Coppo 80] asserts that when the
type system of ML [Gordon 79) is extended. the questio.n of whether a term possesses a type becomes
only "semi-decidable”.

The practical difficulty is that the compiler may not be smart enough to allow constructs that the

programmer may wish to express. And unfortunately, making the compiler smarter generally makes it
more complex.

1.3.1.3. The Gray Area Between Inference and Expression

There is no rigid distinction between infcrence and expression. For example, under the expressive
orientation, a library routine implementing an inference engine could be provided. Or conversely, a
language implementation’s inference rules could simulate expression evaluation. Language processors

generally contain elements of both inference and expression.

The work presented here is based on a strong bias toward expression, tempered with the compiletime
checks necessary to ensure that any computed type values are legal. We do not intend to argue that
expression is unequivocally better than inference. We are simply pointing out the importance of this
orientation with respect to this work.

1.4. Related Work

1.4.1. Pebble

The Pebble language. by Burstall and Lampson [Burstali 84). uniformly allows types. bindings, and
declarations as firsti-class values. Pebble’s bindings are name-value pairs: thev are essenuall:
environments. Giving explicit access to bindings as first-class values makes it easy to build and access
librartes or modules of reusable functions or other ialues under programmer control. Pebble's

declarations are the types of bindings.
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For simplicity, and to focus attention only on the notion of phases, in Phi we do not provide bindings
and declarations as first-class values, though they would be very interesting to add. The idea fits our
general philosophy perfectly.7

Pebble also provides dependent types (see Section 6.2). though our Phi language does not. The need
for them in Phi is somewhat reduced by the notion of multiple phases; this is discussed in Section 6.2.

Pebble deals with language ideas, whereas the notion of strongly typed evaluation phases might be
more accurately characterized as a language implementation idea. As such, Pebble’s semantic rules
have no rigid separation between evaluation stages representing compiletime and runtime. However,
Pebble’s type checking and evaluation rules can be separated to provide static type checking. This
separation essentally leads to different machines (that are applied to the same program) for doing type
checking and evaluation. In contrast, our work provides a single machine that performs both roies of
tvpe checking and evaluation, depending on the expressions in the program. To clarify this distinction.
in Pebble. whether a program is being type checked or evaluated depends on the set of rules applied --
it does not depend on the program itself. Whereas in our work, the syntax of the program determines
whether our single type-checkingoand-evalﬁation machine will do type checking or conventional

evaluation.

1.4.2. Partial Evaluation

Partial evaiuation is variously also known as symbolic evaluation, partial execution. symbolic
execution. or mixed computation. Ershov [Ershov 77a] [Ershov 82] has probably been its main
proponent.

1.4.2.1. Definition of Partial Evaluation

Parrial evaluation reduces one program to another equivalent program in which some parts of the
first program have been evaluated or simplified. For example. the expression @~ b~ "3 m:ght be
reduced (o the equivalent expression g+ b- 6. Or, if a value of § is provided for variable b. expression

a+ b~ 2*3 mght be partially evaluated to a~ //.

In general. if one or more of a program’s :nput parameters are constant. the program may be parualiy
evaluared 10 produce a new. more efficient program by taking advantage of those known consiant

values.

"In fact the first implementation of phases did treat bindings and declarations as first-class values
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4.2.2. Uses of Partial Evaluation

Partial evaluation has mainly been used as a flexible mechanism for specializing programs. The
purpose has generally been to produce a more efficient resulting program -- part of the computation
has been done already. This efficiency motive is one of the two basic reasons for compiling programs
as opposed to interpreting them directly? However, the advantage of partial evaluation over
compilation is its flexibility -- any subset of a program’s free variables (or inputs) can be fixed by
supplying particular values for them. Gifford, Schooler. et al. [Schooler 84] are also working on using
partial evaluation to perform type checking; this correctness motive is the other basic reason for
compiling.

Partial evaluation is also useful in separating notation from data representation. For example, in
Pascal. the syntax for accessing data is tied to the representation of the data, making it difficult to
change data representations. The programmer must choose between representing some data as a
function or in a record. a linked list, or an array, and the syntax for accessing the data reflects this

choice:
a(h) Function invotation.
a.b Accessing a component of a record.
atd Accessing through a pointer variable.
afb] Array subscripting.

Function invocation is the most general case, because any kind of data structure can be hidden inside
the function body.9 Why shouldn’t the programmer always hide the data structure inside a function?
The answer is the traditional high cost of function invocation. But using partial evaluation. the
function call can be avoided by beta-expandingm (also called beta-reducing) the function call in-line.
thus eliminating the performance justification for using specialized notation. Beta-expanding recursive
functions can be a problem in general, but since (at the moment) we are simply discussing the
pussibility of hiding data structure access inside of function calls. recursive functions are not an issue

here,

| F25eo] B

sSccnon 1.2.2 outlines the basic purposes of compiling

(‘l
<

LS WY

9Aclual!y. n Pascal. onlv scalar types can be returned by a funcuon However. other languages do not have this restncuon

CAAL
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A
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)

loBem expansion or beta reduction replaces a funcuon cail with the funcuon’s body. having substituted actual parameters for
formal parameters 1n the body Care must be taken to presene the properties of levical oping Beta expansion 1 smilar to
070 expansion, excepi that macro expansion does not always guaraniee that the properues of lexical scoping are presened
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1.4.2.3. Comparing Phases and Partial Evaluation

As developed in Chapter 4, phase evaluation differs from partial evaluation in two important ways:
(1) a program’s various phases are explicitly indicated in the application program, and (2) program
fragments can be manipulated as first-class values of an abstract data type (the data type ERT). The
latter difference gives a macro-like capability, and the primitive operations that implement the abstract
data type ensure that all generated programs are type correct.

The development in Chapter § shows how modifying and restricting phases might result in a system
that essentially performs partial evaluation. Section 5.4 proposes a “"phase compiler” approach that is

analogous to the "compiled generation™ approach of Beckman, et al. [Beckman 76]. but ours applies to

strongly tvped languages, whereas theirs applied to the untyped language LISP [McCarthy 66]. This

el

‘e %

approach allows one abstract machine to efficiently perform both “partial” evaluation and “full” "‘.,:
. D

evaluation. "7'.": '

YN

i

If phases were adapted to perform partial evaluation as discussed in Chapter 5, the most important

- > d
remaining differences between phase evaluation and partial evaluation would be that: (1) phase ,\f-:
evaluation syntactically distinguishes between those portions of a program that are being “partially™ .';}' .

EOL N

evaluated and those that are being "fully” evaluated, thus allowing the phase evaluator to perform both

y

$ 55

“partial” and "full” evaluation efficiently; and (2) under phase evaluation, a program’s result tyvpe is

r'd
-,
-

)

always known before the program is evaluated.

A

AR

1.4.3. Current Work by Gifford, Schooler, et al.

:

A,

Gifford. Schooler. et al. apparently assume a similar general programming method to ours (described _3-3:
EN

in Section 2.1). Their "kernel” language. the Imagine Base Language (IBL). corresponds to our ].'\‘
.

Implementauon Language (IL). Their programming method also assumes a partial evaluator.
compiiers. and interpreters. whereas ours inciudes a single Implementation Language Machine: our
programming method makes explicit the operation of combining programs to form new programs.

whereas theirs does not.

Their approach to providing an extensible. vet efficient language is based on partial evaluation:

specially defined forms can be converted to simpler. more efficient forms by partial evaluation. From :’
LY

Schooler {Schooler 84): : '.::{
By

Our proposed methodology is a generalization of the Russell [Boehm 80} and f-;:&:-:

EL1 [Wegbreit 74] techniques: all {language] extensions are implemented in the language.
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allowing full user access to the extension mechanism. In addition, partial evaluation will be
used to optimize the code to the point where using the user-defined extension mechanisms
is essentially free in terms of runtime performance.

Gifford, Schooler. et al. also-use their "front end” translators to insert assertions into the kernel
language (IBL) code. and use the partial evaluator to compute as many of these assertions as possible.
Since type checking is handled by inserting assertions about types. they thus provide compiletime type
checking where possible and runtime type checking where necessary. Again from Schooler [Schooler
84):

The code which the partial evaluator acts on will be generated by syntactic transforms

from surface language constructs. The generaied code will preserve all user-specified side-
effects but will also include applicative constructs for type checking, etc.

Finally, since Gifford, Schooler, et al. are using partial evaluation, the comments on partial

evaluation given in Section 1.4.2.2 apply to their work as well.
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Chapter 2
Programming Method

This chapter discusses an assumed programming method. This programming method is very simple
and rudimentary, and is not the focus of the research. It is included only to provide the necessary

framework for discussing the main thesis of this work: the notion of phases.

The reader wishing to skim this chapter must be sure not to skip over Section 2.2.1. which defines
ERTs, and is essential to subsequent chapters.

2.1. General Programming Method

The general programming method shown in Figure 2-1 iilustrates how programs (or program
fragmem.s) may be used to create other programs. There are three essential aspects, described in the

following sections.

2.1.1. Distinct Application and Implementation Languages

First. the general programming method assumes that humans write source programs (or fragments)
in an application language (Phi) that is svntactically convenient for humans. and that these programs
are then translated into an implementation language (IL} that is more convenient for mechanical
interpretation.  This prevents the programmer from directly writing ill-formed programs in the
common implementation language. Because all programs in the implementation language are
generated and manipulated mechanically. they can be guaranteed to have certain properties: in
particular. to be syntactically correct and to be free of possible runtime type errors. (Runtime npe

errors were defined in Section 1.2.1.1.)

This work defines two versions of a simple application language. Phi. and a simple implementation

language. IL. A Phi Translator. which translates from Phi to IL. is also defined.
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Figure 2-1:

General Programming Method
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2.1.2. Programs Are Combined
Second. the programming method assumes that useful programs in the common implementation
language. possibly from libraries, may be combined to form new programs. In this way. various N -
software components could be reused. -
Y
%
The operation of combining IL programs is not defined here. It is assumed to be handled by
whatever particular programming method the programmer uses. and is not essential for discussing the
notion of pha.se's.11
2.1.3. Programs Are Instantiated
. . o PO
Finally, the programming method assumnes that a program can be specialized, instantiated, refined. o
. . . . . i ~<"'.~
or evaluated to form various versions or to compute the final answer. An entire tree of versions might DN
N
be derived. This aspect is consistent with notions of transformational implementation {Cheatham 81).
mechanized top-down stepwise refinement, and partial evaluation [Ershov 77a]. It also means that a
. . - . -
version might be generated that would gather program performance statistics, and these statistics could \:-. .
%
be used in automatically instantiating a more efficient version for those data characteristics [Balzer 83]. %"
“
alet
Instantiation is defined in this work by the semantics of the Implementation Language (IL). that 1s,
by the [L Machine. -
2.2. Specific Programming Method =
L . . . ol
Before describing the notion of phases. let us first discuss the assumed programming method more oe
e
specifically as it relates to the succeeding description of phases. Figure 2-2 illustrates the specific :-:.ji
programming method. It involves application programs written in Phi, a Phi Translator. [L programs C; ‘;
in the form of ERTs (defined below), and an IL Machine. -

. AL
11\omlheicss the speaal data tvpe ERT, deseribed in Secuon 221 and the example ianguages Stauc-Phi and Swauc-IL. ;\3'
descnibed in Chapier 4. make 1t easy o mampulate and combine npe-cnecked program fragments with integnty under progrem P ‘
controi Ir fact that is preasely the purpose of the unusual (Check-) constructs of Stauc-IL Listed in Section 4 2.3 they ke /':{::
pe-checkes 1L programs (in the form of ERTs) and combine them ‘o produce new tvpe-checked IL programs A combiming $\ )

program would thus take ERT vaiues as input (from the environment) and produce an ERT walue  Section 4 3 discusses the n ',
ervironments required by Stauc-11. programs and shows examples of ERT vaiues -
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Figure 2-2: Specific Programming Method
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2.2.1. ERT: Expression, Required-environment, Type

In order to interpret the specific programming method shown in Figure 2-2. we must first define a
special data type for representing type-checked program fragments: the data type ERT. An ERTis a
triplet having the following components:

Expression An expression in the Implementation Language.

Required-environment
A list of each free variable appearing in the Expression component, paired with its
type. Each free variable is listed once, with one type. and no other variables are
listed.

Type The Expression component will evaluate to a value of this type.

The purpose of ERT triplets is to facilitate manipulating programs (expressions), both in the overall
programming method and in the implementation language, while ensuring their integrity. We are not
interested in just any conceivable <e,r,L> triplet -- only those that are meaningful. or valid. as defined

below.12

2.2.2. Valid ERTs

An ERT <er.p is valid if expression e, evaluated in an environment that sarisfies the required-
environment , is guaranteed to evaluate to a value of type 1. By "an environment that satisfies the
required-environment” we mean an environment env such that for each variable-type pair <v.> listed

in required-environment r, variable v is bound to a value of type ¢ in env.

Every ERT generated by the Phi Translator or the IL Machine is valid. 1

12Dzmd MacQueen and John Mitchell have apuy ponted out that a valid ERT corresponds ciosely to the notion of 3 npirg
To quote Reynolds [Revnolds 85):
“Let e be an expression. o (often called a 1ype assignmeni) be a mapping of (at ieast) the
identifiers occurring free in e into types. and o be a type. Then
n e o0
is called a 1yping, and read "e has type o under »"."

Note that this interpretation 1S assurming a parucular deduction or evaluauon mechanism. represented by the ssmbol """ (It
might be more preaise to subscnpt this symbol with the name of the decduction mechanism such as "F-o“ ) Sumilarly . there s a
corresponding implied deduction mechanism for ERT tnplets. which 1s given by the semantic rules for interpreung expressions
:n the Implementation Language.

13To prove this asseruon would be quite tedious The iasi section of Appendix A inciudes a bne! shetch of how 1o approach
proving it
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2.2.3. Interpreting the Specific Programming Method

First, the programmer writes a Phi program.

Next, the programmer invokes the Phi Translator (o translate this program to a valid ERT (i.e. an IL
program).

The programmer might next use some method of combining various ERTs to create a new ERT.

Then, the programmer creates an appropriate environment. and evaluates the ERT by invoking the
IL Machine on this environment and the Expression component of the ERT. The environment
supplies the input, and must include values of the proper types for all free variables in the expression.
(That is, the environment must satisfy the Required-environment component of the ERT, as discussed
in Section 2.2.1. The command interpreter used 10 invoke the IL Machine must enforce this. as
discussed in Section 2.2.4.)

The Type component of the ERT tells what type of value the IL Machine will produce. assuming no
“compiletime” error occurs. (If such an error does occur, one can either thirik of the II. Machine as
returning some special error value distinct from all other legitimate values. or as returning nothing at
all. since evaluation is aborted.) If the Type component is ert, the result will be another ERT;
otherwise it will be some final answer -- a number, for example.l‘1 Thus, one knows beforehand
whether the result of executing each IL program will be another ERT (another program) or a final

answer.

The case when the IL Machine produces another ERT is especially interesting. Since an ERT
contains an expression in the Implementation Language. the IL Machine can be viewed as specializing.
instantiating. or (possibly) partially evaluating a program. as in the General Programming Method
(Section 2.1). But it can also be viewed as compiling a program. though the source and object

languages are the same. This is further explained in Chapter 3.

Note that it is trivial to determine whether the result produced by the IL Machine will be a final
answer: the Tvpe component of an ERT specifiec the tvpe of value that will be produced then the

Expression component is evaluated. Thus. if the Type component is anvthing other than the literal

3
A final answer 15 cefined as an\ alue other than ar. ERT (hat i 1t s not another program 1t might be 3 number. boolean
{anng or other such basic value Conceptually a finai answer might be an enure file though in our simple pedagogical
anguages it wiil not
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ert, the result of the phase evaluating the expression will be a final answer. This is evident in the

examples of Section 4.4. KA
oy
2.2.4. A Command Interpreter :‘::':ti‘.;
e
Certain aspects of the programming method shown in Figure 2-2 must be done by the human. For ::,“,'Z
example, the human must write the original Phi program, invoke the Translator on it, combine -
program fragments (ERTs) as desired. supply the desired environment, and invoke the IL machine on .":::S
the Expression component of the desired ERT. The simplest method of doing these things is to - \
provide a command interpreter -- most naturally written in the Phi language itself -- and this is what we e §
will assume, though any other more automated method is possible as well. It is the command _'j
interpreter’s responsibility to ensure that the expression and environment actually given to the IL ﬂt a
Machine are syntactically correct, type correct, and compatible. However, the use of ERTs makes this ‘(-E$
very easy to enforce, especially since every ERT produced by the Phi Translator or the IL Machine is . ‘ )
guaranteed to be syntactically correct and type correct, and the Required-environment explicitly lists ]
the identifiers and types of values required in the environment. ,
N
2.2.5. Environments 2
An environment simply provides bindings of identifiers to values. As shown in Figure 2-2. along f:..e..
with each IL program (EXPR), the IL Machine must be given an environment (ENV) that supplies .’_'-'.;;‘-:
values of the correct type for all free variables in the IL program (EXPR). In our simple model, an IL "ﬁ.: f
program’s mnput must be supplied via the environment: that is, the IL program might have a free ot
variable representing the program's input. and the environment would have to supply a value for that ';_\:::'
free \anable. thus providing the program’s input. \..
'f-'\'
For example. consider the following trivial program that computes the cosine of a number. x. Tnl:
(cos x)
RN
The free variable x represents the program's input. and the free variable cos refers to a standard cosine :.; .
trigonometric function. Thus, the environment for this program must be constructed to include t
bindings for x (a number). and cos (a function from numbers to numbers). Typically. the binding for T
cos would come from a standard library. whereas the binding for x would be explicily provided by the {:f\“
user. ﬁs’:
AR,
,;Z-}' :
N
21 ;::;'.:
Y
N
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We do not show how environments are generated, but the command interpreter can provide ways of
creating, combining, and storing environments, while keeping track of the types of the variables
defined in them. Pebble [Burstall 84). for example, uses bindings as first-class values, and provides
operations for creating and combining them.

Section 4.3 explains more about the environments required for Static-IL programs. (Static-IL is
discussed in Section 4.2.)

2.3. Motivating Example: General Purpose Sorting Function

This section describes a hypothetical example of how general-purpose reusable programs might be
created and used. The purpose of this example is 10 provide a tangible goal to0 guide the reader’s
intuition through the rest of this work, where the notion of phases is explained. The reader may wish o
skip this section at first, and return to it later as needed.

Bear in mind that the languages discussed in this work are provided for pedagogical purposes only.
They would not be practical for real-life applications such as the motivating example described in this
section. However, these pedagogical languages should demonstrate the basic semantic notions
necessary in a full. usable language that could be practically applied to the example below.

2.3.1. The Desire for a General-Purpose Sorting Function

Consider the problem of providing a truly general-purpose sorting function. Such a function should
be able to efficiently handle a wide range of sorting needs. from sorting a small fixed number of items
in the computer’s primary memory, {0 sorting thousands of records in primany memory, to sorting

millions of records in secondary memory such as disk or tape.“s

Clearly. it is impossible for a single sorting function to fill all of these needs efficienty enough to be
generally useful, because there are many different algorithms that are appropriate for different needs.
Any single program that tried to meet all needs would be much too large to be practical for the smaller

casces.

18
This example comes from another author. but we have been unabie 1o determine whom
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‘ 2.3.2. A Sorting Function Generator

! But consider a sorting function generator. This generator could be given input characterizing a
| particular sorting need, and would produce a sorting function custom-tailored for that application.
Input to the generator might include parameters describing the data types to be sorted, where the data
are <tored, the type of algorithm to be used, or even a characterization of the generated program’s
expected input data distribution. The generator would use this information to choose the most
appropriate algorithm (from some repertoire) and produce the most efficient data structure

declarations.

An automatically generated sorting function probably would not be quite as efficient in every case as
a sorting function that a programmer could write from scratch. However, it could be good enough in
most cases that it would be far more cost-effective to use the automatically generated version than 10

write a new one. This is a fundamental assumption behind the desire for reusable software.

2.3.3. Explicit Generation vs. Partial Evaluation

The sorting function generator could be written in two ways: it could explicitly manipulate program
fragments for the generated program, or it could be written as one big parameterized sorting program
that is partially evaluated to produce a small specialized version. Ignoring the lack of strong typing in
LISP. the approach of explicit manipulation might correspond to LISP programs that construct other
LISP programs as S-expressions. In the partial evaluation approach, the language would have 10 allow
types as first-class values so that data type declarations could be parameterized by input values. and the
partial evaluator would manipulate program fragments to produce a specialized version -- the program
would not express this manipulation explicily. Regardless of which approach is taken. the important
point here is that the work of producing the specialized or generated sorting program must be separated
from the sorting program’s execution. For this discussion, we will assume that explicit generation is

used.

2.3.4. Phases Used

Let us now clearly disunguish between the act of executing the sorting program generator and the act
of executing the generated sorting program. These executions correspond to two acts of insiani:ation,

shown in Figures 2-1 and 2-2, or two phases. nand n+ /. as described in Chapter 3.

To ensure strong typing. both the sorting program generator and the generated program must be
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guaranteed against runtime type errors. In the phase parlance of Chapter 3. if the generator is to be
executed in phase n. it can be type checked in phase n-/. if the generated program is to be executed in
phase n+ /. it can be type checked in phase n.

2.3.5. Generalizing Further

So far we have focused on the application program’s need to use a general-purpose function. To
generalize the example further, suppose that the sorting program generator also uses some general-
purpose mathematical function that also must be specialized before being used. Thus. a math function
generator would produce a specialized version of the math function, which would be used in the
sorting function generator to produce a specialized sorting function. which would be used in some
application program. Again. in the parlance of Chapter 3. the math function generator would be
executed in phase n-/ to produce and type check the specialized math function. which would be used
by the sorting function generator in phase n. These phases are illustrated in Figure 2-3.

In summary, general-purpose function generators can be used to produce specialized functons.

which may themselves be used by other general-purpose function generators.
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Chapter 3
The Conceptual Model of Multiple Phases

This chapter describes the conceptual model of multple strongly typed evaluation phases. Proper
understanding of the conceptual model is critical in understanding the Phi language. the Phi translator.
and the Implementaton Language.

3.1. Arriving at Phases by Extending Compiletime

The conceptual model of phases is best understood by presenting the arguments that led 1o its
development. We begin with a simple conceptual view of traditiona} compiletime and runtime, shown

in Figure 3-1.

First, a source program, written in a strongly typed language. is compiled into an object program.
This step is Phase 1 -- compiletime. During this phase. the compiler manipulates type ‘alues and
program code, and as a result produces an intermediate object program that 1s guaranteed free of
runtime type errors. 16

The object program. with a suitable environment. is then executed on an implementatuon machine.
This step 1s Phase 2 -- runtime. During this phase. basic values such as numbers. character strings. and
booleans are manipulated. and the result of the computation is some basic final value such as a
number. a character string, a boolean. or. conceptually, a file. The environment defines all identifiers
that are not locally declared in the program. that is. it provides bindings for all of the program’s free

vanables

‘GT‘he quesuon of whether there could be type errors 10 a program’s input someumes anses here For exampie an input
operation requinng a number could insiead be given «ome meamngless character tnng  This problem can be avaided by only
providing an input operation that 2lwavs reads characters and forcing tpe consersion (o be accomplished by ordinan funcuons
under programmer control Thus. for exampie. the input sequence “123" would be read as the characrers 1" "2° “1" of known
tipe. and then converted by the program to the numericvalue 123

For smpheity. the simple pedagogicai languages descnbed in this wora ¢o not include input or outpul operations
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Figure 3-1: N
Traditional Compiletime and Runtime .
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3.1.1. Generalizing Compiletime

Let us now view the compiler as executing the source program to produce the object program, and
allow the programmer to express types as first-class values that are manipulated during compiletime.
And 1o provide really useful expressive power. let us also allow the programmer to express other types
of values, for example, numbers and booleans, at compiietime, and to write arbitrary compiletime

expressions and functions involving these values.

Now, with values of various kinds (numbers. booleans, and of course types) being manipulated at

compiletime. it is conceivable that a so-called "runtime” tvpe error could occur during compiletime.

- = -

For example. one may mistakenly try to add a number 10 a tvpe during compiletime. Therefore, we
add another phase -- a pre-compiletime phase -- that does the tyvpe checking required to ensure that no
"runtime” type errors can occur during compiletime.

v s ww

Our conceptual model, at this point, is shown in Figure 3-2. Phase 1. the pre-compiletime phase.
now manipulates tyvpe values and program code. and as a result produces a program that is guaranteed
, not to commit a “runtime” type error when executed during the next phasg. Phase 2. compiletime.
now manipulates numbers. booleans. type values. and program code. and produces a program that is
guaranteed free of runtime type errors. Phase 3. runtime. manipulates numbers and booleans as

before, producing a final answer {(number, boolean, eic.).

3.1.2. Generalizing Pre-compiletime, And So On. ..

At this point, we can make two obsenations. First the pre-compiletime phase is now performing a
role completely analegous to the role compiletme had plaved. Hence. we can apply the same
reasoning to generalize pre-compiletime. and add a pre-pre-compiletime phase. and so on. thus
potenually allowing an unbounded number of phases. Each phase except the last produces a type-

checked program for the next phase.

Second. we observe that the operations performed by the compiler have now become a superset of

the operations performed at runtime. Hence we can unify the two so that one Implementation

[.anguage {iL) Machine fiils both roies. The resuiting conceptuai modei is described in Secuon 3.2.
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3.2. Conceptual Model of Multiple Phases

Figure 3-3 illustrates how a Phi program is translated and then. in effect. executed thiough several

intermediate phases before producing a final result

Note the correspondence between Figure 3-3 and the specific programming method illustrated in
Figure 2-2. The loop shown in Figure 2-2 is unfolded in Figure 3-3: thus the conceptual mode] shows
several repetitions of the IL Machine -- one for each-ume it is invoked. Also. for simplicity, the

combine action in Figure 2-2 is not shewn in Figure 3-3.

3.3. Interpreting the Conceptual Model

A Phi program is first translated to ERT,. The Expression component of ERT, is then executed on
the IL Machine in a suitable environment ENV, -- this is phase 1 - to produce ERT,. The Tvpe
component of ERT, specifies the type of value that will be produced by phase 1. For the first phase. it
1s always ert, indicating that another ERT will be produced. Similarly. the Expression component of
ERT, is then executed in phase 2 to produce ERT,. and so on. The Type component of ERT,-
specifies the type of value that will be produced as a result of phase 2, etc. The result of some phase n
i1« considered the final result of the computation because it is not an ERT. That is. the Type component

of ERT | indicated that the result would be something other than another ERT. Thus, the original Phi

! program could be viewed as a meta-program because. in effect. it denotes a series of programs ERT,. ..
ERT

1 3.3.1. Properties of the Conceptual Model

The concepiual model has the following important propertes:

- Each phase does the tvpe checking necessary to ensure that no runtime [yvpe errors are
nussible duning the next phase.

- No runtme type errors are possible during the first phase, either.

- Every ERT produced by the Phi Translator or the IL Machine 1s vahd v Specificallv. the
Expression component is guaranteed syntactically correct and tvpe correct.

=

- The type of each subexpression is computed at least one phase before the value of that o
. . . . ]
subexpression is computed. Similarly. the type of the program’s result 1s known before the R
program is phase evaluated (i.e. it is given as the Tvpe component of an ERT). :.:-';;-:
A
S oS

! As defined 1n Section 2.2 2
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Figure 3-3: Conceptual Model of Multiple Phases
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- Each phase acts as compiletime for the next phase, and as runtime for the previous phase.
Thus, the terms “compiletime” and “runtime" are relative. These terms will still be used in
the rest of this work -- they are still meaningful terms -- but the reader should recognize
that their meanings are relative to other implied runtime or compiletime phases.

- The Phi Translator does no type checking -- it will produce a valid ERT, free of possible
runtime type errors, for any syntactically legal Phi program. This is explained in Section
3.33.

3.3.2. Resolving the Conflict Between "Strong Typing" and "Types as First-Class
Values”

Section 1.2.3.3 points out the inherent conflict between strong typing and the desire for types as
first-class values. In our model of multiple phases, types are indeed allowed as first-class values, yet
every phase is strongly typed. How is the conflict avoided in our model?

In general, types manipulated as first-class values during one phase become invariants of the next
phase. in the sense that a type used in a declaration represents an invariant. If an identifier is declared
to be some type, that type represents an invariant on the kinds of value that may be bound to that
identifier. Similarly, if a function’s return value is declared to be a certain tvpe, that type represents an

invariant on the kinks of value that the function may return.

In our model it is not possible to use a type. computed as a first-class value, as an invariant of the
same phase during which it was computed. Type values computed in one phase have no bearing on the
types of the expressions executed during that same phase.18 One can compute an arbitrary type value
during one phase, but that type value can only be used in declarations pertaining to subsequent phases
-- not in the declarations pertaining to that same phalse.19 For example. in the same phase. one cannot
both compute the type used to declare an identifier. and bind a value of that type to the identifier. The
type of the identifier must be computed during at least one phase before the idenufier may be bound to
a value of that type. Thus. the notion of separate phases prevents any possible circular dependenc:

between an object’s type and its alue.

181‘.‘15 promeny s readilh evident :n Stave-1l precented 1n Section 42 Exprecaions in Suaue-ll are npe checkec and
generated 1n the form of ERTs. and 1n doing so. types are computed as firsi-class values However. there 15 no construct in
Swatic-1L for evaluaning an ERT That s there 1s no provision for invoking the Stauc-IL NMachine from within Sauc-1L Hence
there 1s no way for the tvpe values. computed in one phase 10 have any effect on the tvpes of the idenufiers or expressions
evaluated dunng that same phase

quoncei\abI). the 1ype may even he computed b a recursive funcuon. as mentioned tin Section 6 3. though for simplic::-
recursive funcuons are not provided in the Static-Phi and Suauc-1L languages descnbed 1n Chapter 4
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3.3.3. The Paradox of Strong Typing Without Prior Type Checking

We mentioned that every phase is strongly typed. and that the IL program for every phase -- except
the first -- is type checked by the previous phase. We require that the first phase also be strongly typed.
vet we also mentioned that the Phi Translator does no type checking. How can we ensure that the IL
program procduced by the Phi translator does not contain any runtime type errors if the IL Translator
does no type checking? The answer is simple: the translator produces an IL program in which every
subexpression evaluates to a value of the same type: type ERT.

This means that the only operations performed during the first phase are manipuiations of program
fragments. This makes sense when one considers: what if it weren’t true. That is. suppose some other
operation -- addition of two numbers, say -- could be performed during the first phase. Then, to
guarantee that this operation could not involve a runtime type error, there would either have to be

another previous phase or the translator would have to do some type checking.

Hence. every variable is type ERT initally, and every IL program produced by the translator
evaluates to an ERT (assuming no compiletime errors occur during evaluation). (If a compiletime
error does occur during evaluation. the program can either be thought of as returning some special

error value, distinct from all other values, or as returning nothing, since the evaluation is aborted.)

3.3.4. All Expressions Start Out Type ERT

If we view the IL programs ERT,..ERT  in Figure 3-3 as represerting successive versions of the
initial Phi program, then the type of every subexpression or variable in the initial Phi program starts
out as ERT. and remains ERT until some phasc when it becomes fixed as some basic tvpe. such as a
number or a boolean (any type other than ERT). Finally. dunng the following phase. the expression or

variable will have a value of that type (number or boolean).

‘This onc-way progression represents the accumulation of information about the expression or

t'.rf'
-, \fu} "

-~
- S
->

variable. Type ERT means that nothing is known about the expression or vanable. Then. during some

LA N 4

phase. the type of the expression or variable is known (number or boolean. for example). Finally.

during the next phase. the specific vaiuce of the expression or vanable is computed. This subject 1s
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mentioned further in Section 7.2.8.
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3.4. Assigning Computations to Phases

Given a source program, we need some way to decide during what phases its various
subcomputations should be performed. For example, we require that the type of a function’s formal
parameter be computed at least one phase before the function can be applied to any actual arguments.

There are two basic approaches we can take; the first of these has two variations.

1. Static determination. The phase for each computation is fixed during translation, before
the first phase. This approach most closely follows the reasoning presented in Section 3.1,
which led to the idea of multiple strongly typed evaluation phases, and this is the approach
on which this work was initially based. There are two sub-options possible under this
approach;

a. The source program can explicitly indicate which computations are to be performed
during each phase. This was the original approach conceived as "multiple strongly
tvped evaluation phases”. and is described in Section 4.

b. The Phi Translator might infer which computations should be performed during each
phase. This approach was not pursued in this work. We do not know how difficult
this alternative might be, or what problems it might present. It is open for future
research. as mentioned in Section 7.2.9.

2. Dynamic determination. The phase for each computation is determined during the various
execution phases, and depends on the environments supplied during the previous phases.
This would allow phases to achieve the effect of partial evaluation, because the tvpes and
values of different free variables could be "fixed" as desired during different phases. The
essential distinctions between this kind of phase evaluation and partial evaluation are that,
under phases, the same machine would be used to perform "partial" and “full" evaluation.
there is a rigid requirement of strong typing in each phase, and the type of result -- either
the final answer or another program -- would be known in advance.

This approach has not been fully explored. but the possibility is discussed in Chapter 5.

3.5. How Many Phases Are Required?

How many phases will be required 10 execute a given Phi program (o a final answer? In general. the
answer depends on the program. whether a model of static or dynamic determination of phases is used.

and might depend on the environments provided in the various phases.

Any given program will always require some nunimum number of phases before it can produce a
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final answer. For the Static-Phi language described in Section 4.1, an algorithm (Ccuni. defined in
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Appendix A) is used 10 compute this minimum based on the lexical nesung level of emits and evals in
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the original Static-Phi program, and, hence, it cannot be infinite for a finite-sized program.zo For
example. the program demonstrated in Section 4.4.3 requires three phases, whereas the program in
Section 4.4.9 requires four phases.

What about using more phases than the minimum? When phases are determined statically, there is
little flexibility for extra phases, because a given program would expect certain inputs, via the
environments, in certain phases. (Section 4.3 discusses environments for Static-Phi.)

If phases were determined dynamically, with each phase performing the function of partial
evaluation, then extra phases might freely be used. Partial evaluation is defined to preserve the
semantics of the original program, so extra phases should certainly cause no harm, and they may
improve the efficiency of later phases by allowing the values of some expressions to be pre-computed.
Of course, if there are no more expressions that can be pre-computed, adding an extra phase.does
nothing useful. As a trivial example, consider the program consisting only of the variable x. If no final
value is given for x, x will just partially evaluate to itself. That is, the program will be partially
evaluated perfectly well, but no useful work will be done because no further reduction is possible until

a final value is supplied for x.

20\\'0 do not know 1f there might be any other reasonable language in which a weil-formed program could require an infinite

minimum number of phases We suspect not. and the question is not considered here
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This chapter informally describes the originally conceived system of multiple phases, in which the a'.:
oy
phase for a particular subcomputation is explicitly denoted in the source program. That is, the phase o
for a given subcomputation is determined statically during translation. We demonstrate this approach K/ _ .
by defining a source language, Static-Phi, a Static-Phi Translator. and an implementation language, :
Static-JL. More precise semantic definitions are given in Appendix A. “{:“c
Ly
fal
The reader well-versed in the typed lambda calculus may wish to skim Section 4.1. which describes .Y
Static-Phi, noting the special emit and eval constructs, and then turn directly to Section 4.2, which 3
describes Static-IL. Section 4.2.3 is important because it discusses the unusual language constructs in ‘,E.', \
. W
Static-IL. Finally, the reader is swongly urged to read the discussion of the two examples in Sections » '_:
4.4.3 and 4.4.9 to gain an appreciation of how phases work. v
_.‘:
4.1. The Static-Phi Language PG
’
The Static-Phi language is expression oriented. and looks like a simpie typed lambda o

calculus [Barendregt 84] with two extra constructs added. Types are unrestricted first-class values:
wherever a tyvpe is required. any arbitrary expression that evaluates {0 a type may be given. There is no
modifiable store, or assignment operation. There is one abstraction operator. A. for data abstraction.

function abstraction. type abstraction, and code (ERT) abstraction.

4.1.1. Conventional Static-Phi Language Constructs

The Static-Phi language includes the following basic forms:

consiant A literal constant, for exampie. o number 1234, a tuth saiue false. or a ty pe constant
number, bool. ert. or type. Type constant type refers (o the tvpe of types: ert 1s the
type of ERTs. descnbed in Secuion 2.2.1.

id An idenufier (vanable). An identifier alwavs evaluates to the value bound 101t 1n
the environment.




A id: expry = expr_.expr, dy X
For creating an unnamed function abstraction. Expr, and expr_ are arbitrary
expressions that must evaluate to types; they declare the types of the domain and
range of the function, that is, expr, is the type of the formal parameter id, and expr,
is the type of the function’s rewrn value. Expr, dy is the body of the function.
Because we require "compiletime” type checking (that is, one phase before
“"runtime"), the formal parameter type will be evaluated one phase before the
function value (closure) is created. That is, if the function is to be applied in phase i, W,
the type of the formal parameter will be computed in phase i-/.

LR
NoAY
(expr, expr,) Function application. Expr, is an arbitrary expression that must evaluate 0 a .,‘_ "‘
function; expr, will evaluate w© the actual argument. The type of the actual E ]
argument must match the declared type of the formal parameter for the function: . 5

this is checked during the phase before the function is applied. The function
application always occurs during the same phase that the actual function value is
created, regardless of any nesting inside emits or evals (described below).

'{ I?

R
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(funtype expr, expr,)
Standard function for constructing the types of functions. The subexpressions are
evaluated (they evaluate to types) and paired to represent the types of the domain —

AL

and range of a function. Expr, is the domain type: expr_is the range type. Of .
- course, both subexpressions must be type type; this is checked one phase before the :
function type is 1o be constructed and returned. b

4.1.2. Normal Runtime Phase

Normal runtime phase refers to the phase in which a parucular operation is actually performed (as s b
opposed, say. to the phase in which the operation is type checked). Within a single program the P

normal runtime phase will be different for different instances of different operations. For example. the

tvpe expression for a function’s formal parameter might use an operation that is also used in the body .
. N . « . ‘.
of the function. Used in the formal parameter type expression, the operation’s normal runtime phase -

will be one phase sooner than for the instance of the operation that appears in the body of the function.
"Normal runtime phase” is usually used as a comparative term. to contrast the different phases when

wo operations are performed.

B: altering the normal runuime phase of an operation. one can cause the operation to be performed

during some phase earlier or later than it would otherwise be performed. Basically. if an operation is

used to compute a type that will be used to type check a subsequent phase. then one would want the .
normal runume phase of the operation to be one phase earlier than it otherwise would be. Or. if an -

operation is used to explicitly generate some code (an ERT) that is to be executed in a later phase (as

with macro expansion), then one would also want the normal runtime phase of the operation to be cne
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phase earlier than it otherwise would be. On the other hand, if the operation in question were a part of
the generated code, one would want its normal runtime phase to be one phase later: that is. the normal
runtime phase of the operations that are doing the generation should be one phase earlier than the
normal runtime phase of the operations in the generated code.

The normal runtime phase of a construct is altered in three ways: by being inside an emit (discussed
below), by being inside an eval (also below), or by being in a function abstraction's range or domain
type expression. The normal runtume phase for 2 function abstraction's range or domain type
expression is implicitly one phase earlier than the normal runtime phase for the function. since the
function must be type checked during the phase before it is apphied. Emit and eval are used 10
explicily change the normal runtime phase of an expression: eval makes the normal runtime phase
one phase earlier, while emit makes it one phase later. These are discussed below in Section 4.1.3. and

are more precisely defined in the formal semantics given in Appendix A.

4.1.3. Some Unusual Constructs

In addition to the familiar constructs outlined in Section 4.1.1, Static-Phi also includes the following

unusual forms.
(eval expr) The normal runtime phase of expr is one phase earlier than in the surrounding
context. Note that the domain and range type expressions in the A consuruct. expr o

and expr_, are effectively inside an implicit eval. because the types need to be
computed one phase before the function value (closure) is created.

(emit expr) The normal runtime phase of expr is one phase later than in the surrounding
context.

Note that our eval is very different from the LISP EVAL. OQur emit and eval forms are only used
durning translation. They are not executable niotions. and there are no Stauc-IL svntacuic forms that

correspond to them.

Note also that emit and eval cancel each other out. 1n a manner analogous v the LISP back-quote

("") and comma (",") macro constructs. Thus. (emit (eval expr). (eval (emit expr)). and expr are

endrely equivalent in Static-Phi.
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4.1.4. Examples

This section shows some simple examples of Static-Phi programs. Section 4.4 shows how each of
these examples would be translated to Static-IL programs and appear in various phases. The
explanations of the identity function examples in Sections 4.4.3 and 4.4.9 give the flavor of what the
various phases do. We begin here with trivial examples and work up to more interesting cases.

4.1.4.1. F Twice

(f(fx)

Some function fis applied twice to an argument x.

4.1.4.2. Identity Abstraction

A X : number ~— number . x

An unnamed identity function that takes a number and returns that same number.

4.1.4.3. Identity Application

(A x : number — number.x §)

The identity function from the previous example is applied to the number 5. The finai result will be

4.1.4.4. Function Abstraction

A x : number — number . (succ (succ x))
If succ is the successor function on numbers. defined in the environment, this is an unnamed

function that adds 2 to its argument.

4.1.4.5. Function Application

(A x : number — number . (succ (succ x)) 5)

The funcuon from the previous example is applied to 5. The final result will be 7.

4.1.4.6. Higher Order Function Abstraction

A f: (funtvpe number number) — number . (f (f x))

This function takes another function as an argument and applies it twice to some free variable x. The

actual parameter must be a function from numbers to numbers.




4.1.4.7. Higher Order Function Application

(A f: (funtype number number) — number. (f(fx)) ¢)
The higher order function from the previous example is applied to g, which must be a function from

numbers 10 numbers. Thus, function g is applied twice to the free variable x. The program is
equivalent to:

€ @®@x)
4.1.4.8. Identity-Function Type Abstraction

At:type—ert.(emit Ax:t—t.x)
This function takes a type  and returns code (an ERT) that will become an identity function in the

next phase. The generated identity function will be specialized for tvpe ¢, and may onlv be applied to
values of type 1.

There are two function abstractions in this example: the outer function abstracts the type variable ¢ in
one phase, and the inner function abstracts the variable x in the next phase. Note the emit surrounding
the inner function abstraction. The emit informs the Static-Phi Translator that the inner function

abstraction is to be created one phase later than the outer function abstraction. This is required

because the outer function abstraction is manipulating a type value that will be used in type checking

the inner function. Hence, during the phase when the outer function is created and applied. the inner
function is just treated as code (an ERT), and is tvpe checked. The outer function is acung like a macro

in returning the code (an ERT) instead of returning a function \alue (or closure).

The outer function cannot both compute the type 1 as a first-class value and return the inner functon
as a function value (closure) during the same phase. because. 10 enforce strong tvping. the iwnner
function must be type checked during the phase before it 1s used as a function value. Therefore. if the

emit were omitted. a compiletime error would occur when the inner function was being ty pe checked.
4.1.4.9. Identity-Function Type Application

(At tvpe —ert.(emit Ax:t—t.x) number)
The identity-function generator of the previous example is applied to tvpe number 10 generate an

idenuty function from numbers 10 numbers.
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4.1.4.10. General Type Abstraction

et e e =

T
. .

A t:type — ert. (emit A f: (funtype t t) — t. (f(f x)))
This function takes a type 1 and returns code (an ERT) that will become a function in the next phase.

z|

The generated function will take any function from 1 to 1 and apply it twice to the free variable x.

.

‘-,-

This example demonstrates how types may be manipulated as first-class values during one phase, yet
become invariants of the next phase. The outer A creates a function that takes (and could manipulate)
a type as a first-class value. However, it rerurns code (an ERT) that has been tvpe checked using this
tvpe. This returned code happens 1o be the code for a function abstraction. (Incidentally, free variable ~
x is also type checked when the ERT for the function is generated and type checked.) Section 4.4.10

shows how this example would appear in various phases. K

4.1.4.11. General Type Application

(A t:type — ert.(emit A : (funtype t t) — t.(f(fx))) number)
The ERT-returning function of the previous example is applied 10 type number.

4.1.4.12. Macro Abstraction

Am:ert —ert.(m(mx))

This function takes some code m (an ERT) and returns code that applies m twice to some free

L

vanable x.

AT

- & o

Note that the formal parameter m and the function’s return type are both ert. indicating that this

funcuon will take code (an ERT) as its argument and return code (an ERT) as its result. This function '.f
. €
manipulates code. much like a macro. j- '::
s
. . ' ".'
4.1.4.13. Macro Application NN

4

(Am:ert = ert.(m(m))
(¢mit Ay : number — number . (succ (succ y)))

)

The macro of the previous example is applied to code which will become a function to add 2 10 1ts
argument. Note that the actual argument is surrounded by an emit so that the (macro) function of the
previous exampie will operate on 1t as code (an ERT) rather than as a function value (or closure).
Thus. the outer function treats the inner function as code during one phase, and the inner function
becomes a function value (closure) during the next phase. If the emit were omitted. the outer function

could operate on the inner function only as a function value (closure), not as code. Section 4.4.13



shows the IL code that results from translating and executing this example through the necessary
phases.

4.2. The Static-IL Language

As shown in the conceptual model (Figure 3-3), a Phi program is not executed directly, but is first
translated into a corresponding Static-IL program. The translator is defined in Appendix A. though
examples of translation are given in Section 4.4. This section describes the Static-IL language. which
includes some unusual language constructs for creating and combining type-checked program

fragments in the form of ERTs.

Syntactically, Static-IL looks like an untyped lambda calculus. In fact Static-IL is typed, though type
declarations are not explicit. Under the programming method shown in Figure 2-2. the Static-IL
Machine is given only Static-IL expressions that are guaranteed free of runtime type errors or unbound
variables, and it generates Static-IL expressions only within valid ERTs.2! Since a vaiid ERT triplet
includes a list of all the Static-IL expression's free variables and their types. and the type of the
expression, Static-IL expressions should be regarded as typedh22 We speak of Static-1L expressions as
being well typed in the same sense that one would speak of the object code for a compiled Pascal
program as being well typed. even though the type information from the source program is stripped

out after being checked. when the object code is generated.

4.2.1. Lexical Scoping, ERTs. and Macros

Static-IL expressions are lexically scoped. Nonetheless. if ERTs are explicitly manipulated by the
programmer. just as with conventional macros, 1t 1s possible to generate new expressions in which free
vanables have become "captured” by local declarations. Note that this is possible onlv in program
fragments (ERTS) that are explicity being constructed. as first-class data objects. When an expression
1s executed. that expression iy absolutely lexically (or statically) scoped. and nc such anomalies are

possible.

5
ey ah¢ ERT” was defined in Secion 222

1

““John M:tchell and David MacQueen have pointed out thai it may be better 1o regard the impiemenwauor. language as
consisung of the entire ERT tnplet (rather than just the Expression component). since the R (Required-environment) and T
{Tiper componen's of the ERT tnpiet contain the 1ype informauon for the E (Expression) component
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The examples below illustrate how, in constructing an expression by manipulating ERTs as first-class oo
values, a variable can appear to become “captured”. as with macros. In the following Static-Phi
program, x will evaiuate to the ERT representing the outer z, thus causing the outer z to be placed into
the scope of the inner z.
)
~
A 2 : number — (funtype number number) . \
(eval
(Ax:ert —ert. ey
(emit A z : number — number . x) .
z "
) wad
) N
For example, the following Static-Phi program (which simply supplies actual parameters for the .
-
functions in the preceding program), :'r:‘ A
o
" %
(
(A z: number — (funtype number number) . ey
(eval e
(Ax:ert —ert. v
(emit A z : number — number. x) LT
z N
)
g A
.‘-"\
) oy
10 B
L
KN
) DY,
will be phase evaluated to produce the following Static-IL program, N
)
e
o
(apply (apply (lambda z (lambda z z)) (quote 5)) (quote 10)) ;sf.
N
which evaluates to 10. _..\‘
‘ o A . . ) e
The behavior illustrated above is quite intentional -- it was not an oversight -- though 1t is different .y:
than one might naively expect. The explicit intent here is to manipulate program fragments (ERTs) 10 {.\
construct new programs with new semantics. This bchavior is useful for program-writing programs. U
and 1s analogous to the behavior of convenuonal macros. Also. bear in mind that under ne T
circumstances can this behavior cause a runtme type ¢rTor. Any attempt 1o cause a type mismaich in &:
AN
the constructed code will be detected as a compiletime error, one phase before the constructed code "
¢an be executed.




4.2.2. Conventional Lambda Calculus Operations

T B

The following Static-IL primitives look and function exactly like the basic operations of an untyped

lambda calcuius, written in the style of LISP:
ey Any quoted expressible value. The value ev is simply returned. unevaluated. In
Static-IL, constants appear as explicity quoted values.

id An identifier. Its value is simply retrieved from the environment.

: (1ambda id expr ) Function abstraction. /d is the formal parameter. expr is the function bodv. A
4 lambda abstraction evaluates to a closure, consisting of the current environment. the
’ formal par~—eter, and the function body.

(apply exprf exprx )
Function application. Expr, evaluates to a function closure: expr, is evaluated and
becomes the actual argument. The function application has already been tvpe
checked during the previous phase.

(funtype expr expr, )
This operation is used to generate the tvpe of a function. Subexpressions expr 4 and
expr_ are simply evaluated in the current environment: they evaluate to types.
These tvpes. Iype, and lype . are used as the domain and range types of the function
type that is returned.

The returned function type is represented as a pair. tagged with the word fun:
{fun type,. type >. For example. <fun number number> represents the type of a
function that takes a number and returns a number.

{1ncr expr ) Increment. This operation returns the value of the expression plus one. There is no
corresponding operation in Static-Phi: incr is only included in Static-IL to make
the examples in Sections 4.1.4 and 4.4 more interesting. (In the examples of Section
4.4 wncris used to implement the succ function. which 1s assumed to be supplied in '.j
the environment.) i
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purpose is to produce type-checked program fragments (ERTs). That is. the ultimate purpose of the
operations listed below is to type check and generate the conventional operations listed above. All of
the Static-IL constructs discussed below return ERTs as their result Several of them involve a
parameter n, which is a constant. determined during translation, that indicates how many phases to
wait before generating one of the conventional operations. The Static-Phi translator uses the emits and
evals 10 determine during what phase each of the various conventional operations should occur, and
generates the Static-IL program with the corresponding ns. The examples in Section 44, and in
particular the two examples in Sections 4.4.3 and 4.4.9. démonstra[e what happens in successive phases.

how these language constructs work, and the purpose of these n parameters.

4.2.3.1. (deep-const ¢ [ n)

This construct always returns an ERT. [ts purpose is to generate a type-checked quoted constant in
the proper phase, i.e. a Static-Il. program of the form ‘ev. C is any constant value, / is its type, and n is
the number of phases to wait before the constant is needed. Deep-const can be thought of as deeply

quoting the constant. (Constants are not assumed to be self-quoting.)

The operation deep-const is evaluated as follows. If n > 0 the ERT
<{deep-const ¢ [ n-]), <. ert> is returned; otherwise, (when n = 0), thc ERT <'¢c. <. nis
returned. The idea is that each time deep-const 15 evaluated. it basically just decrements n, returning
the same kind of ERT untl n reaches 0. When n reaches 0, then an ERT containing the quoted

. . pX]
constant and its type is returned.

4.2.3.2. (check-funtype expr, expr,_n)

Check-funtype alwavs returns an ERT. It is used 1o generate an ERT containing a funtype

expressicn as its Expression component, when n1s 0.
Both expr, and expr_will evaluate to ERTs: call them <e .r .1, > and Ce .r .1 0.

L.et us first consider the case when the number »1s 0. in which case a funtype ERT will be retumed.

Both Iy and 7_ must be the type constant type. indicating that ¢ and € will evaiuate 1o types dunng

the next phase. (Itis 2 "compileume” errer if erther v oor v are not type) Next the Expression

‘3\'01c that the constant s tvpe 15 hidden unul the phase before the constant i used. even though the t'pe K determined

< nlactically by the onginal Stauc-Phi program  This mean< that if one hype of constant s wnllen where some Other 1vpe is
requirec. the type mismatch will not be discosered unti the phase defore the vaiue of the concant wouid have been used ever
thaugh i ceniainly would be bener 1o repont the error ac eariv as possible This issue i mentioned uniherin Seetor ™ 2 §
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components ¢, and e, are used to build the Expression component of the ERT that check-funtype will
rewrn. For example, if e, and e, are *number and " number, check-funtype will return an ERT with the

expression component (funtype ‘number ‘number).

Similarly, the resulting ERT’< Required-environment is formed by combining the Required-
environments 7y and r,. This means that the free variables of the resulting expression include the free
variables of both of its subexpressions e, and ¢.. However, the Required-environments must be
consistent: if a variable appears in both. it must have the same type, otherwise it is a “compiletime”

erTor.
Finally, the Type component of the resulting ERT will be type -- funtype always returns a type.

If n > 0. then this is not the right phase to generate a funtype expression; instead. another
check-funtype expression will be generated. and n will be decremented, as for geep-const. In this
case, both 7, and !, must be the type consiant ert, indicating that e, and e, will evaluate w ERTs
during the next phase. The resulting ERT will be constructed in a manner similar to the case when a
funtype expression is generated, except that the Tvpe component of the resulting ERT will be ert

instead of type.

4.2.3.3. (check-1ambda id expr, expr,_expr, . ay )

The check-Tambda construct is analogous to the check-funtype construct: it is used 10 generate a
1amboa Static-IL expression, and it always returns an ERT. However, check-1ambda differs from
check-funtype in two important ways: it has a bound variable, id; and two of its subexpressions. expr,

and expr . evaluate to types. while the other. expr . evaluates 10 an ERT.

body

The check-1ambda construct is evaluated as follows. First. the type expressions expr, and expr, are

evaluated in the current environment: call the resulting types ¢ p and 7 .

Next. an ERT <id<idi 21,2 1s formed for the bound variable and its type. The Expression
component is simply the formal parameter: the Type component is the function’s domain type (the
type of the formal parameter): and the Required-environment lists only the formal parameter. This

ERT wili be used in type checking the body of the function.

Now the body expression expr, . 1s evaluated 1n an environment augmented by the binding of «d 0

ody

the FRT (:d.(zd.(d). (42, and the result is a (1ype-checked) ERT (ebody body’ oy J. Torenfy that the
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function body really does return the declared type, the Static-IL Machine must have lhogy = !¢t itisa

“compiletime” error if they are not equal.“

Because Static-Phi allows the programmer to write functions on ERTs -- like macros -- it is possible
that the body expression references a variable that has the same name as the formal parameter, id, but a
different type. (This is discussed and illustrated in Section 4.2.1.) Therefore, to ensure that any free
instances of id in the body really are the declared type. id is looked up in the required-environment

Toody 'O verify that its type is 1,,.

Finally, the Static-IL Machine constructs the ERT that is returned by check-1ambda. The Expression -

component is (1ambda id €hoay) The Required-environment component is just the required-

environment from the body r, with the formal parameter, id. removed.” The Type component is

body’
<fun ’d' ro.

4.2.34. (check-check-1ambda id expr, expr, expryoq, M

This construct is used to generate a check-1ambda IL expression. Subexpressions expr,. expr,_, and

expryoay all evaluate to ERTs: an ERT is always returned. Check-check~lamoda is analogous to

"bod
check-funtype in that it waits for the phase when n = 0 before generating and returning a
check-lambda expression. For other phases when n 2 0. it just decrements n and returns another

check-check-1ambda expression in the resulting ERT.

Recall that the purpose of the check-iambda construct is to generate type-checked tambda
expressions. Similarly. check-check-1ambaa is provided for generaung tvpe-checked check-1ambda
expressions. Remember that everv expression must be guaranteed tvpe correct dunng the phase before
it i1s executed. But notice that two of the arguments 10 check-lambaa are assumed to evaluate to types.
Check-check-1ambda does the type checking necessary t0 guarantee that those two arguments will

indeed evaluate to types.

At this point, the queston usually arises as 10 whether further check-check-check- Or

‘4.\1051 languages wouid not actuzily require these 1 pes 10 be idenucas tut would insiead require only that "od be a t\pe
that :s coercible o t, Such gratuitous 1ype conversions do not make 2 language fundameriallh more powerful when the
programmer could just as well eaplicitly call standard tpe-con\ersion funcuons as necded Coercions are amply provided for
convenience

%'Me formal parameter i 1s a free \anable in the funclion boa. but looking from outside a the enure lambda evpression
it 15 bound by the lambda
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check-check-check-check-1ambda constructs might be needed. Fortunately, they are not, and the
reason is that for check-check-1ambda, all evaluated arguments evaluate to ERTs, and the Static-Phi
Translator ensures that every expression will initially evaluate to an ERT. That is. the purpose of
check-check-lambda is to ensure that all of check-1ambaa’s evaluated arguments will indeed be the
expected types. and it is required because two of check-1ambda’s arguments must be type expressions.
But all of check-check-1ambda’s evaluated arguments must be ERTs. And since the Static-Phi
Translator only generates expressions that are guaranteed to evaluate to ERTs, no further
check-check-check-1ambda is needed to ensure that the cvaluated arguments to check-check-1ambda
will be ERTs.

Check-check-1ambda is evaluated as follows. Subexpressions expr, and expr_ are evaluated 1o ERTs.
If n ) 0. their type components must be ert; otherwise (when n = 0), their type components must be
type. Next. an ERT is constructed from the formal parameter, id, for use in type checking the body.
This is similar to check-1ambda. except that the type of id is always ert. As with check-1ambda. the

body expression expr, is evaluated to an ERT in an environment augmented by this binding. If

body
this ERT's required-environment lists the formal parameter id, its tvpe should be ert. Finally, the
return ERT is constructed from the Expression and Required-environment components of the ERTs
obtained from evalualing check-check-lambda’s subexpressions. If n b 0. n 1s decremented and
another check-check-1ambda is generated for the Expression component: otherwise (when n = 0). a
check-lambda is generated for the Expression component. In either case, the Type component is ert.
The Required-environment component is generated by combining the subexpressions’ required
environments, with the formal parameter removed. However. the Static-IL Machine must first ensure
that these required-environments are compaiible. any identifier listed in anv of the required-

environments must be listed with the same type in each of the subexpressions’ required-environments.

4.2.3.5. (check-apply expr, expr, )

This construct is used 10 generate an apoly Static-1L expression. Subexpressions expr, and expr,

both evaluate to ERTs: an ERT is returned.

This construct is different from the others in that the Static-Phi Translator does not determine. 1n
adrance. the phase in which ¢ function apphcation will actuaily vccul. Insicad. the check-apply
operaticn monitors the Tvpe component from its first argument to see when it will become a function
rather than an ERT. If it will be a function. the function’'s domain type 15 checked against the tvpe of

the actual parameter; otherwise, another creck-apply Is generated.
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Check-apply is evaluated as follows. First subexpressions expr, and expr, are evaluated 1o ERTs
Cep.reled and <e .1 1. 0. If 1, is a fun type. <fun ty 1., then 1, must equal ¢ . and an spply ERT is
returned with Type component /.. Otherwise, 7, must be ert (it is a "compiletime" error if it is not).
and another check-apply ERT is rerurned with Type component ert. In either case, the Required-
environment component of the resulting ERT is formed by combining r, and r,, which must be
consistent. Finally, it is a compiletime error if /, is ert but ¢_is not ert, because this means that the
function argument would evaluate to some final basic value (such as a number Or boolean) in the next

phase, whereas the function expression will evaluate to another ERT.

4.2.4. Efficiency of Static-IL

Given that the Static-IL language includes both compiletime and runtime operations, how efficiendy
can it be processed? Must it be less efficient than a conventional lambda calculus? Might it be more
efficient? Without focusing on the details of any specific implementation, we can make some general
observations about Static-IL's inherent efficiency. Since the Static-IL Machine is used both for

compiletime and runtime. et us examine these roles separately.

On one hand, when the Static-IL. Machine is plaving the role of runtime. the operations performed
are just the simple operations listed in Section 4.2.2. These are in fact identical to the operations of a

conventional untyped lambda calculus, and hence can be just as efficiently processed.

On the other hand. when the Static-IL. Machine is playing the role of compiletime. it may be more
efficient than a conventional compiler because it can use the basic operations of the runtime machine
directly instcad of simulating them. For example. constant expressions are evaluated directly at
compiletime by our single Static-IL Machine. whereas a conventional compiler must evaluate them by

simulating the action of the runtime machine.

Henc.. the Static-lL Machine can be just as efficient at performing runtime operations as a

conventional runtime machine. and may be more efficient at performing compiletime operations than

a conventional compiler.
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4.3. Environments for Static-IL Programs

As discussed in Section 2.2.5, environments supply bindings of identifiers to values, for all of a
program’s free variables. In our simple model, the environment provides the input for a Static-IL
program. and a separate environment must be provided for each phase used. This section provides

some insight into the purpose of these environments.

4.3.1. Static-Phi Program X

Let us begin by considering a Static-Phi program consisting of only the single identifier. x. This
Static-Phi program will be translated to the ERT <x, <x,ert>, ert>. The Expression component is
simplv x: the Required-environment component is <x.ert>, meaning that the only free vanable in the
expression is x and its type is ert: and the Type component is ert, because the expression x° will
evaluate 10 an ERT.

In order 10 evaluate the Expression component x we must provide an environment that satisfies?® the
Required-environment In this case. the environment must include a value of type ert for x. As
mentioned in Section 3.3.4, every identifier starts out as type ert, that is. during the first phase. ever
idenufier must be bound to an ERT. Let us consider some of the possible ERT values that we might

provide for x.

Suppose we supplied the ERT value <x, <x.ert>, ert> asthe value of x in the environment. Then.
in the first phase. the expression x would simply evaluate to this value -- <x. <x,ert>. ert>. But this
is preciselv the ERT that resuited from translating the original Static-Phi program! In effect x has

simply ¢+ aluated to itself. This is known as the default ERT for x.

4.3.2. Definition: Default ERT

For any 1denufier id the ERT «id. <id ert: . ert, is called the default FRT for this identfier.

)
‘6Samﬁ« 115 defined in Section 222
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4.3.3. The Purpose of Default ERTs

Default ERTs are used to pass identifiers through some number of phases before fixing their types.
(Fixing an identifier's type is discussed below in Section 4.3.4.) They are called "default” ERTs
because a command interpreter would normally provide a default ERT binding for each identifier of
type ort that was not to be fixed to some other type.

4.3.4. Fixing the Type of an Identifier

Suppose that we supply a slightly different ERT value for x in the environment:
<x, <x,number>, number>. This looks similar to the default ERT, but the tvpe of x is given as number
in the Required-environment. and Expression’s result type is then number also. If we supply this ERT
as the value for x in the environment. then. of course, x evaluates to this ERT --
<x. <x.number>, number>. In this case, even though the Expression component is again x. the type of
x is now given as number, that is, x must be bound to a number in the next phase. Whereas the default

ERT simply caused x to evaluate to itself, this ERT fixes the type of x to be type number.

4.3.5. Fixing an Identifier as a Function Type

The last example fixed x as type number. We could just as well fix it to be some function tvpe. For

example, if we provided the following ERT value for x in the environment,
<x, <x.{fun number number)>, (fun number number)>

then in the next phase. x must be bound to some function from numbers (0 numbers.

4.3.6. Fixing an Identifier as a Macro

We have just showed how the type of x could be fixed as a functjon from numbers t0 numbers. If we
instead fixed the type of x as a function from ERTs 10 ERTs, by supplyving the following ERT value for

x In the environment,
<x, <x,(fun ert ert),, (fun ert ert).

then » would act as a macro in the next phase. That is. in the next phase. x would be bound to some

function that takes code (an ERT) and produces code (an ERT) as its result.
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4.3.7. Fixing the Value of an Identifier

In the last three examples. x was bound to an ERT that fixed the type of x for the next phase.
requiring x to be bound to some number or a functon during the next phase. Thus. the 73 pe of x was
fixed for the next phase, but the va/ue of x was not fixed for the next phase. Suppose we had instead
bound x to the ERT <'s. <>, number>. In this case. not only is the type fixed for the next phase. but

the value is a constant: 5. Since the Expression component of this ERT has no free variables. the

|

1 identifier x does not even appear in the Required-environment. >
: \'_
4.3.8. Other Possibilities 5
Of course. these are not the only interesting ERT values that might be bound to x. For exampie.
suppose the ERT <y. <y.ert>. ert> were provided as the value of x. This ERT is identical 0 the ‘r:;;
default ERT for x except that it uses the identifier y instead. This, in effect renames x to y for the next :: ()
phase. ':;
‘ . B
So far we have discussed some of the ERTs that might be supplied in the environment as values of a e
Static-1L program’s free variables. Of course, free variables of other tvpes, such as number Or (fur ;:g
number number), would have to be bound to values of those types in the environment. 23",
e
4.3.9. What Values to Supply in What Phases ; _;':-
.._\
-'r‘-
Since a different environment is supplied for each phase, the queston anses as to what each of these ;:‘ -
environments should include. Of course. the Required-environment specifies the npes of the values I
that must be provided in the environment. but 1t does not tell thc purposes of these vajues. In ::-;Q:’
parucular. there were several different kinds of ERT values discussed above that might be used for an ‘;:.
idenuficr of tvpe ert. How do we know which is appropnate? ‘:;E
e arswer depends on the program and the programmer's intent. Even program will be expeciing
certain kinds of input via the environment. 1n certain phases. Information on the kind of input
expected in cach phase (other than its type) must be provided as external documentation. 1n the same
way that the purposes of any conventional program’s inputs must e documented.
RGN
There 1s. however, a pattern to the types of the free variables that one would generally expect to sece ~
in wanous phases. Since every identfier starts aut type ert (as menuoned in Section 3.3.4) the default :\'\
ERT woaid imually be used for that identfier. Then. dunng some phase the tvpe of thisidenufier will ’
o
%
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be fixed to some basic (non-ERT) type, as described above, and finally during the next phase the
identifier will have a value of that basic type. Thus. pertinent documentation on this identifier should
specify during what phase its type should be fixed.

The examples in Section 4.1.4 help provide an urderstanding of how various phases are used and

what happens in each phase.

4.4. Examples of Translation and Evaluation

This section shows examples of translating all of the Static-Phi programs shown in Section 4.1.4 to *

Static-IL programs, and executing the resulting Static-IL programs through phases. The most straight-
forward and informative examples with which to begin are the two that involve creating and applying
an identity function in Sections 4.4.3 and 4.4.9. The Static-Phi Translator and Static-IL Machine are
formally defined in Appendix A.

In the examples below, ERT values <e,r..> are displayed in a LISP-like form:

(erin

Similarly, environments are displayed as LISP-like lists. Each element of the environment lists an
identifier-value binding, which is in turn displaved as a LISP-like list. for example:

(
(id, value /)
(i , valuez)

( idn value”)

Finally. Required-environments are also dispiaved as LISP-like lists. Each element of the Required-

environment lists an idenufier-type pair, which is in turn displaved as a LISP-like list. for example:

(l‘d/ npe;)
(1, I)'pe‘,)

(i, type,)
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4.4.1. F Twice

This example is complicated by the need for a (non-empty) environment. Therefore. the reader 1s

advised to first study the example of Section 4.4.3. Identity Application. which involves no free

’ .
) variables.
4
3
(ffx)
.
1
e
) >
N B AR e R R Result of Translation =~-----c-cov-c-cons s
] ( :f
4 s
b (check-apply T (check-apply f x)) ; Eapression o
((f ert) (x ert)) ; Req-env \
ert ; Type
)
p
LTemssscssececcanon Environment for Phase 1 -------------cco--
(

(x (x ({(x number)) number))
(f (f ((f (fun number number))) (fun number number)))

)

R L L Result of Phase ] ~-------cccce-cono--

(
(appiy f (apply f x)) : Expression
((f (fun number number)) (x number)) . Req-env
number . Type

)

{x 5)
(f (closure z (incr 2} (')
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4.4.2. Identity Abstraction

See the example of Identity Application in Section 4.4.3.

A x : number — number . x

e bbbttt Result of Translation ~-----=------cse-cc-

(check-check-1ambda . Expression
X
(deep-const number type 0)
(deep-const number type 0)

b
0
)
() ; Required-environment
ert ; Type
)
e bk b Environment for Phase 1 =--=--------c------
0
jemoseessescesseens Result of Phase 1 ~-----~=-=~-~-------
(
(check-lambda x ‘'number ‘number x) . Expression
() : Required-environment
ert . Type
)
B e Environment for Phase 2 ~------------------
| ()
l immmeseecescoooses Result of Phase 2 ------------=--=-=-
’ (
{(lambda x x) . Expression
) . Required-environment
(fun number number; . Type
jmecceesesesmonoen Environment for Phase 3 ---=-<---------c----
()
R LR iy Result of Phase 3 -------------c-c--
{closure x x ())
s
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4.4.3. Identity Application

This is the best of these examples to study first.

The comrespondence between the Static-Phi program and the ERT that results from translation
(shown below) is as follows. To dispense with the easy parts first. the Required-environment
component of the ERT is empty, because there are no free variables. and the Type component is ert,
indicating that the result of the first phase will be an ERT, as it alwavs is. In the Expression
component, the function application of the original Static-Phi program has been translated to a
check-apply Static-IL construct The A abstraction was translated to a check-check-1ambda, using the
formal parameter name; the type constants number and number were translated 10 deep-const forms.
listing the number of phases to wait as 0; and the identifier, x, supplied as the function body. was
simply translated to itself. x. The generated check-check-)amboa lists the number of phases to wait as
0. Finaily, the constant 5 that was given as the actual argument was translated to another deep-const
form. listing the number of phases to wait as 1. Note that the deep-consts generated for the number
tvpe constants have one fewer phases to wait than the seep-const generated for the function's actual
argument 5. This is because the type values will be needed to type check the function application. one

phases earlier than the function is applied to the constant s.

The progression through phases 1s as follows. During the first phase. the types of the function’s 1ype
expressions (number and number) are checked 10 ensure that they really are type expressions and not.
say. numeric expressions. Upon doing this check. the check-check-1ambda produces a check-1ambda.
During the second phase. these type expressions will be evaluated to the type values number and number
and these tvpes will be used to generate a type-checked 1ambda. In turn. the check-apply verifies that
the type of the actual argument matches the function’s declared formal parameter type. and generates
an apply form. Finally, in the third phase. the functuicn is applied to the constant 5 to produce a result

of 5.

The onginal Static-Phi program and the progression through phases are showrn below. Compare this

example with the example in Section 4.4.9.
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jeesseeseessoco--- Static-Phi Program --------s---v---- .

(A x : number — pumber.x  3)

(e sssssesecocnnoo Result of Translation --------ccocecoo--
(
{check-apply . Expression:
{check-check-lambda .
x ; Formal parameter
(deep-const number type 0) : Domain type
(deep-const number type 0) . Range type
x . Expression body
0 ; Phases to wait
)
(deep-const 5 number 1) . Actual) argument
)
() . Required-environment
ert . Type
)
{moermmcseeccaecne Environment for Phase 1] ~----~~-s--ccccvonn
()
R R L e Result of Phase | ---~------cc-cocnnn
(
{check-apply ; Expression

(check-lambda x 'number 'number x)
(deep-const 5 number 0)
)

) . Reguired-environment
ert . Type
)
R R LR TR T Environment for Phase 2 ~-----=c-cveccmnenn---
()
LT mecsmeessoenoo Result of Phase 2 ------coevccmannnn
{
(apply (lambda x x) '5) . Expression
() . Required-environment
number . Type
)
------------------- Environment for Phase 3 -~-------nec-c-eeno-
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jmeesssesssesceccoo- Result of Phase 3 ~----------------o-

4.4.4. Function Abstraction

A X : number — pumber . (succ (succ x))

jmeeesscessesceooo- Resuit of Translation =---------------o--

(check-check-lambda x . txpression
(deep-const number type 9)
(deep-ccnst number type 0)
(check-apply succ (check-apply succ x})

0

)

{{succ ert)) . Reg-env

ert . Type
)
LTesessssesesesocos Environment for Phase 1 - ~------c---cn---
(

(suce (succ ((succ ert)) ert))
LTessessecssosoooen Result of Phase 1 ~----ccc---ecocenn-
(

(check-lambda x ‘number number ., Expression
(check-apply succ (check-apply succ x))

)

((succ ert)) . Req-env

ert . Type

R R R R Environment for Phase 2 ~---~----=-=c--c---

(succ (succ {(succ (fun number number))) (fun number number;))

LTTmesseeesesonnes Fesult of Phase I -=-------mccc------
(
(lambda x (apply succ (apply succ x; Express:on
((succ (fun number number);) - . Reg-env
(fun number number: Tvoe
N
N
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jmeseememmeccccnaa- Eavironment for Phase 3 ~-----=----c-ceoon- oYy
( Ny
(succ  (closure z (incr z) ())) >
)
imesesssesssosscens Result of Phase 3 ~---------cccccc-- .
(closure ey »
x A
(apply succ (apply succ x)) :
((succ (closure z (incr 2) ()))) v
) o
. . . ..\
4.4.5. Function Application <
‘.0
I ,
’.
(A x : pumber — number . (succ (succ x)) 5) 3
.:5.';.
ROSCS
jememmesmmmsseesne- Result of Translation ~------------------ 2
( o
[y
(check-apply . Expression -
(check-check-lambda -
X )-
(deep-const number type 0) <.
(deep-const number type 0) pa
(check-apply succ (check-apply succ x)) :‘;
0 S,
) .
(deep-const 5 number 1) )
) Ay
((succ ert)) . Req-env 'a_.ll:
ert . Type .:»."\

'5

Z

R bbb Environment for Phase 1 ------------------

(suce (succ ((succ ert)) ert)) -
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------------------- Result of Phase 1 ~----<c-=ce-c-=~=c=--<
(check-apply . Expression
(check-1lambda
X
'number
‘number
(check-apply succ (check-apply suce x))
)
(deep-const 5 number 0)
)
((succ ert)) . Reg-env
ert . Type

------------------- Environment for Phase 2 ~--=----=-c--c--=-==<

(succ (succ ((succ (fun number number))) (fun number number)))

------------------- Result of Phase 2 ~--------=--==-=-°<

(apply (lambda x (apply succ (apply succ x))) '5) ;. Expression
((suce (fun number number))) . Regq-env
number . Type

jeeme-meescssosecos Environment for Phase 3 ~-=--------=c----"-~

(succ (closure z (incr z) ()))
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4.4.6. Higher Order Function Abstraction

A f: (funtype number number) — number . (f (f x))

R R Result of Translation -----c--cc-c-o--o-

(check-check-lambda
f
(check-funtype
(deep-const number type 0)
(deep-const number type 0)
0

; Expression

)
(deep-const number type 0)
(check-apply f (check-apply f x))

0
)
((x ert)) . Req-env
ert i Type
)
(Temmosmeeseseenoo Environment for Phase 1 ---------cev-cooooo
(
(x (x ((x ert)) ert))
)
joTeeceesmsoseesens Result of Phase 1 ~------------ccun-e
(
(check-lambda . Expression
t
(funtype ‘number ‘'number)
‘number
(check-apply f (check-apply f x))
)
({(x ert)) . Reg-env
ert
}
A L Environment for Phase 2 ~------------ -
(

(x (x ((x number)) number})
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jmmessesecccsonceee Result of Phase 2 ~--------cc-ccoce-e
(
{lambda f (apply f (apply f x))) . Expression
((x number)) . Reg-env
(fun (fun number number) number) , Type
)
(Teessssescccvoocns Environment for Phase 3 ~------c-c--c-ce-o-
(
(x 5)
)

jTessscessececcmcns Result of Phase 3 --------ccecccoan~
(closure f (apply f (apply f x)) ((x 5)))

4.4.7. Higher Order Function Application

(A : (funtype number number) — number . (f(fx)) g)

(check-apply
(check-check-lambda

f

(check-funtype
(deep-const number type 0)
(deep-const number type 0)
0

)

(deep-const number type 0)

(check-apply f (check-apply f x))

0
)
]
((2 ert) (g ert;) . Reg-env
ert . Type
)
Smmeeeseemeeens Environment fcr Phase 1 ------------------
(
(f (f ((f ert)) ert))
(g (g ((g ert)) ert))




(check-apply . Expression
(check-1ambda
f .
{(funtype ‘'number 'number)
‘number
(check-apply f (check-apply f x))

) .
((x ert) (g ert)) ; Req-env

Environment for Phase 2

(x ({(x number)) number))
(g9 ((g (fun number number))) (fum number number)))

Result of Phase 2

(apply (lambda f (apply f (apply f x))) g) . Expression
((x number) (g (fun number number))) . Req-env
number
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4.4.8. Identity-Function Type Abstraction

At:type — ert.(emitAx:t—1t.x)

(Temeseseseecoooone Result of Translation =----------v-ccuc-e-

(check-check-lambda . Expression
t
(deep-const type type 0)
(deep-const ert type 0)
{check-check-lambda x t t x 1)

0
)
() ; Req-env
ert . Type
)
(meemesssseccacccee Environment for Phase 1 --------ceccccnnn-
()
R e L Result of Phase 1 -----------=--coue
(
(check-lambda t "type ‘ert . Expression
(check-check-lambda x t t x 0}
)
() . Reg-env
ert . Type
)
e SRR T R Environment for Phase 2 ------------c---n-
()
3 R R Result of Phase 2 ---------------nen
}
(
(lambda t (check-lambda x t t x;° . Expression
[ . Reg-env
* {(fur type ert) . Type
: (SA R
LAY
-_'\
b i Environment for Phase 2 ---------eceee-o-s v"
() v
------------------ Result of Phase 3 ---------------nne :.i]
(closuro t (check-lambda = t t x: (); Ay
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4.4.9. Identity-Function Type Application

This example requires one more phase than the example of Section 4.4.3. If we view what happens
in the various phases in terms of the original Static-Phi program, phase 1 checks the types of the type
expressions in the outer A abstraction; phase 2 type checks the outer A abstraction and its application,
and the types of the type expressions in the inner A abstraction; phase 3 applies the outer function to
the actual argument and produces an ERT for a type-checked identity function on numbers; and

during phase 4 this identity function becomes an actual function value. or closure, that could have been

applied to a numeric argument.

(check-apply
(check-check-lambda
t
(deep-const type type 0)
(deep-const ert type 0)
(check-check-lambda x t t x 1)
0

. Expression

)

(deep-const number type 1)

() . Regq-env
ert . Type

SSLRLN
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NS




(
(check-apply
(check-1ambda
t
‘type
‘ert
(check-check-1ambda x t t x 0)
)
(deep-const number type 0)
)
() . Reg-env
ert ; Type
)
isesesseccescocnonn Environment for Phase 2 ~-=--=---------------
0
immmmessssssessenos Result of Phase 2 ~----------c--cccoe
(
(apply (lambda t (check-iagmbda x t t x)) "number) ; Expression
() . Req-env
ert . Type
y .
jomeeeceseccevaooo Environment for Phase 2 ~-=----c---cc-----
Q)
el Result of Phase 3 --------ovcvccoce-
(
(lambda x x) . Expression
) . Req-env
(fun number number) . Type
)
L Temssesescc-cmene. Environment for Phase & ------------------
(3
Jomtessessessemooes Result of Phase 4 ----------v-vooons

(closure x x ()
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4.4.10. General Type Abstraction

A t:type — ert. (emit A f: (funtype tt) = t.(f(f x)))

jTmeesssssccecocras Result of Translation ---------cvevecono
(
(check-check-lambda ; Expression
t
(deep-const type type 0)
(deep-const ert type 0)
(check-check-1ambda
L 4
(check-funtype t t 1)
t
(check-apply f (check-apply f x))
1
)
0
)
((x ert)) . Req-env
ert . Type
)
B L DR Environment for Phase | ---=ccccccrecccen-
(
(x (x ((x ert)) ert))
)
R S Result of Phase 1 ----------ce--eoene
(
(check-lambda . Expression
t
‘type
‘ert
{check-check-1ambda
f
(check-funtype t t C;
t
(check-apply f (check-apply f x)) -
¢
)
)
((x ert)) . Req-env
ert . Type
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Environment for Phase 2 ~--=--wc=-c---cc=-=--

PP R LT

(x {(x ert)) ert))

(x

Result of Phase 2 ~------=-<=c--c=cc=--

, Expression

(lambda

t

(check-lambda

f

(funtype t t)

t

(check-apply f (check-apply f x))

)

. Regq-env
. Type

((x ert))

(fun type ert)

P T T

gnvironment for Phase 3

cacememsmcr e e e

(x {(x number)) number))

(x

Result of Phase 3 ~-----=--------=---

(closure

t

{check-lambda f (funtype t t) t

(check-apply f (check-apply f x))

)

({x (x ({(x number)) number)))
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4.4.11. General Type Application

(A t:type — ert. (emit A f: (funtype t t) — t.(f(fx))) number)

jmmmemeseseoocoone- Result of Translation =~------ccecc-c-o---
(
(check-apply ; Expression
(check-check-lambda
t
(deep-const type type 0)
(deep-const ert type 0)
(check-check-lambda
L 4
(check-funtype t t 1)
t
(check-apply f (check-apply f x))
1
)
0
)
(deep-const number type 1)
)
((x ert)) . Req-env
ert : Type
)
R e Environment for Phase 1| --------c-cccwan--
(
(x (x ((x ert)) ert))
)
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tf.‘
Vo'r
—
o
(emeescnns s=<=-=+=--- Result of Phase 1 ~------ Seccerecan. 0
( 2
Ly
(check-apply ; Expression :~ o]
{check-1ambda "&
t A
‘type b,
. B
ort g
(check-check-Tambda "".B
f FR
(check-funtype t t 0) L ‘
. -
(check-apply f (check-apply f x)) .’
[4} [ e
) N
) N
{desp-const number type 0) | :
}
((x ert R - \
& )) . Req-env Pty
; Type rre
: e
1-";..‘
-"h.‘
o
LR L L L Environment for Phase 2 =~---evvcecou-.. -
: 2
. (x (x {((x ert)) ert)) O
) e
e~
S
o
AR EE R LR Result of Phase 2 -----cmceemnnn.s .- S
{ o
(apply . Expression Ny
(lambda RN
. :J'.:-‘
"
(check-lambda AN
; :I.'I
\l':'
} (funtype t t) ~
t
(check-apply f - N ¢
pply (check-apply f x)) %"\'
: ) NG
; RS )
A
‘number .‘i
‘ L
! NS
| ({x ert)) . Reg-eny
ert . Type
)
iTmesemesms oo Environment for Phase 3 -----ce-o-coaa....
f
(x (x {(x number)) number ;)
=0
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jreseemmmmm oo messs Result of Phase 3 ~=<------"=-=-=""°"" N
( *vt}
(1ambda f (apply f (apply f x))) . Expression [N Y "
({(x number)) . Req-env
(fun (fun number number) number) . Type
)
ettt Environment for Phase 4 ~-------------cooTT
(
(x 5)
)
------------------- Result of Phase 4 ~-----<------<-==-"="<

(closure f (apply f (apply T x}) ((x 5)))
4.4.12. Macro Abstraction

Am:ert = ert.(m(mx))

jem=mssssoms-e-moce- Result of Transistion =------====---=°°""<
(
(check-check-lambda , Expression
m
(deep-const ert type 0)
(deep-const ert type 0)
{check-apply m (check-apply m x))
0
)
((x ert)) . Req-env
ert . Type
)
R R RS Sl Environment for Phase 1 ~--<---------=°°"""°"
(
(x (x ((x ert)) ert))
)
R e Result of Phase 1 ~---=-------°--°°°°°~
(
(check-lambda m "ert ‘ert . Expression
{(check-apply m (check-apply m x))
)
({x ert)) . Reg-env
ert . Type
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Environment for Phase 2

(x ((x ert)) ert))

(x

Result of Phase 2

. Expression
. Reg-env
 Type

(1ambda m (check-apply m (check-apply m x)))

((x ert))

(fun ert ert)

Environment for Phase 3

g

(x ((x ert)) ert))

(x

Result of Phase 3 ~----=---=-cecc-on-

{(closure

(check-apply m (check-apply m x))

((x (x {(x ert)) ert)))

72




4.4.13. Macro Application

(Am:ert = ert.(m(mx))
(emit A v : number — number . (succ (succ Y)))

(check-apply , Expression

0
)
(check-check-lambda
y
(deep-const number type 1)
(deep-const number type 1)
(check-apply succ (check-apply succ y))
1
)
)
{(x ert) (succ ert)) . Reg-env
ert Type
)
AR Environment for Phase ] ~------<----ccv-oen--
(
(succ (succ ((succ ert)) ert))
(x (x ((x ert)) ert))

(check-check-lambga
m
(deep-const ert type 0)
(deep-const ert type 0)
(check-apply m (check-apply m x))
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iemesmmessccccecono- Result of Phase 1 ~-<-----<-v----- so=--
(
(check-apply . Expression
(check-lambda
m
‘ert
‘ert
(check-apply m (check-apply m x))
)
(check-check-lambda
y
(deep-const number type 0)
(deep-const number type 0)
(check-apply succ (check-apply succ y))
0
)
)
((x ert) {succ ert)) ; Reg-env
ert : Type
)
e R EELE b Environment for Phase ¢ ~---~-----<-------
(
(suce (succ ((succ ert)) ert))
(x (x ((x ert)) ert))
)
jemesesesssesaoan. Result of Phase 2 ~----------ccrconee
(
(apply ; Expression

(lambda m (check-apply m (check-apply m x)))
{check-lambda

y
‘number
‘number
(check-apply succ (check-apply succ y):
)
)
((x ert) (succ ert)) . Reg-env
ert . Type
)
R Environment for Phase 2 ------------------
(
(x {x ((x number)) number))

fsucc fsucc f(succ (fun number numher)\) (fyn number numher .




(
(apply . Expression
(lambda y (apply succ (apply succ y)))
(apply (lambda y (apply succ (2apply succ y))) x)
)
({succ (fun number number)) (x number)) . Reg-env
number . Type
)
jmeemsssesseccocoo- Environment for Phase 4 --------c-c-coeoo..
(
(x 5)
(suce (closure z (incr z) ()))
)
(e mesesssssceoonn Result of Phase 4 -----c--c--cccoaa-
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Chaptef 5
Using Phases for Partial Evaluation

This chapter describes how phases might be used o perform partial evaluation. In this approach, the
phase for a particular subcomputation is not denoted in the source program or determined when the
program is translated. but is determined dynamically by the environment supplied for each phase.
This approach has not been fully explored, and is open for future research. but we demonstrate how it
might proceed by describing a source language, Dynamic-Phi. and the beginnings of an
implementauon language. Dynamic-IL. There is no formal semantics given for these languages, since

they are not fully developed.

5.1. The Dynamic-Phi Language

The Dynamic-Phi language 1s identical to the Stauc-Phi language described in Section 4.1. except it
does not provide the emit and eval constructs or the type constant ert; hence Dyvnamic-Phi is not
discussed further here. Instead of allowing the programmer 10 explicitly manipulate ERTs under
program control. the system uses ERT values transparenty. to represent the results of a parual

evaluation.

5.2. The Dynamic-IL Language

A< with the Stauc-IL language., Dvnamic-IL looks ke an univped lambda calculus because tvpe
declarations are not exphicit but in fact 1t 1 strongly tiped. In fact. almost all of the constructs of
Static-11 and Dynamic-IL look similar. though the semanucs of constructs that manipulate ERT alues

are necessarily different. as discussed in Section 8.2.2.
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5.2.1. Conventional Lambda Calculus Operations

Dynamic-IL has the following simple operations that look like a conventional lambda calculus
written in the LISP [McCarthy 66] style. These function exactly the same as in Static-IL. They are:

Tev Any quoted expressible value.
id An identifier.
(1ambda id expr ) Function abstraction.

(apply expr, expr, )
Function application.

(funtype expr, expr, ) W
The type of a function. As with Static-IL. the returned function type is represented < ‘
as a pair. tagged with the word fun: <fun type,, lype>. "~

These operations are not discussed further here.

5.2.2. Other Operations

All but one of the other operations look similar to operations in Static-IL, except that the operations
below lack the n parameter, and hence their the semantics are somewhat different. In Static-IL. the n
parameter specified how many phases 10 wait before generating one of the conventional operations.
and this was determined statically, during translation. But in Dynamic-IL. the determination of when

to generate one of the conventional operations is done dynamically by each of the operations listed

2

Ay

below. Compared with Static-IL. Dynamic-IL is missing one operation. deep-const. and contains one

.,.,.,
ek

498

new operalion. hold. Deep-const IS unnecessary because there is no a prior: determination of when a -

constant will be needed: ne1d 1s now used to pass a value computed in one phase. to the next phase. o

tn
.

2.21. (nora 1 expr)

Holg always returns an ERT. The argument / may be anv value of type type -- it is not an expression
-- and expr is an expression that evaluates to a value of that type. Hold simply evaluates expression ot
U

exprto some value ev. and returns the ERT «<rev. <~ 1. Thus, even though expr is evaluated during

this phase. its value is not used until the next phase. oo

Hold is tvpically used to synchronize two \alues that are needed by an operation. Each of the check-

operations must detect this and generate holgs as necded. For example. the funtype operation has two



subexpressions that must evaluate to types. During the phases before the subexpressions evaluate to
types. they will evaluate to ERTs. What if one of the subexpressions is ready to evaluate to a type
during some phase, but the other is still going to evaluate 10 an ERT. and will not evaluate to a type
until the foillowing phase? In that case. the subexpression that is ready to evaluate to a type can be
evaluated. and the nold operation can be used to pass the resulting type value on to the next phase,
when the other subexpression will also evaluate t0 a type. Thus check-funtype can force both
subexpressions to rerurn ERTs during one phase, and during the next phase, the furtype operation will
have both typc values as needed. Section 5.2.2.2 explains specifically how this works for the

check-funtype operation. Other check- operations work analogously.

§.2.2.2. (check-funtype expry expr, )

Check-funtype alwavs returns an ERT: it is used to generate a funtype ERT. However, unlike in
Static-IL. check-funtype will not necessarily generaie a funtype expression during this phase. If its
arguments will not be ready to be fully evaluated to types during the next phase (that is. if its
arguments are stl; going to evaluate 1o ERTs). another check-funtype expression is generated. This is
similar to the way check-appiy in Static-IL generates an app1y if the function arguments will be ready

in the next phase. and a check-apply if not.

Check-funtype is evaluated as follows. Both subexressions expr_ and expr, are evaluated 1o ERTSs.

call them Ce.ro.1 > and <e_.r .1 D. If both 1, and 7, are type. a funtype expression is generated. as in

r

¢
Suatic-IL. If both 1, and 1, are ert. the returned ERT will contain a check-funtype expression: the
Expression component will be (check-funtype e, ¢.): the Required-environmeat component will be
the combinaucn of ry and r_, which must be consistent (as defined in Section 4.2.3.2): and the Type

component will be ert,

Note that. for a funtype expression to be generated. both /, and 7, must be type. indicaung that €
and e_will evaluate 1o types. Since eveny expression starts out (afier ranslation) evaluating to an ERT.
tn effect I NG 7, will start out as ert and wiil become type dunng some later phase. But what if one
of the check-funtype’s subexpressions 1s reads 1o evaluate 10 a bype before the other 1s ready” That is.

what if either 1400115 type. but the otheris ert”

In this case. we can simply allow the type value to be computed dunng the next phase. but use a nola
expression (0 pass the result on to the riext phase. (0 be ready duning the phase when the other
subexpression 1s also ready to evaluate to a type. Thus. a check-funtype 15 generated as before. but a
Ro1d 1< inseriec 10 pass the type value to a subsequent phase as a constant. For example. 17 1 1 type

anc /s ert. the resulung Expression component will be tcneck-funtype (ncla type €q) €. ).
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N e . . o
Itis a "compiletime” error if either 1, or /_is not type or ert. i
¢ 2 .J’
5.2.2.3. (check-1ambda zdexprd expr, expry 4. ) -
. i\
Analogous to check-funtype, check-1ambda is used 10 generate a 1ambda but should generate another :$ ',’:"
check-1ambda if the body expression will not be ready during the next phase (that is, if the body o

expression evaluates to an ERT whose Type component is ert). If another check-1ambaa is generated.

the type expressions will simply be the quoted type values that were computed during this phase.

The implementation of check-1ambda is not as straightforward as it may at first seem: its discussion is

postponed to Section 5.3.

5.2.2.4. (check-check-1ambda id expr, expr, €Xpry gy ) .‘::.é'
This construct is handled straightforwardly in a manner analogous 10 check-funtype above. After :é%"
evaluating expr, and expr, an ERT binding (with Type component ert) is created for the formal o
parameter. and the body expression XPTy o4y is executed in an environment augmented by this ,_\
binding. If both expry and expr, have evaluated to ERTs whose Type component 15 type. a :‘{Eg
check-1ambda will be generated. Otherwise another check-check-1ambda should be generated. with ';';

nold used as necessary.

5.2.2.5. (check-apply expr, expr, )

This construct is evaluated as in Static-1L, except that notd may be inserted as needed if either the
function or the argument is ready before the other (that 1s. if one will still be an ERT when the other

will be a function or non-ERT value during the next phase).

5.3. Problems in Implementing Check-Lambda

Before discussing these issues, 1t should first be noted that there are several wavs of paruall 0

A
evaluating function calls. Beckman et al. [Beckman “6] provide a good outline of the various methods ::':
We will restrict our attention to the simplest choice. ;.$.\.

"!‘,‘1‘
Suppose we have the following lambda abstractuon in Dynamic-Phi. which has free vanable f: b
A X : number — number . (f x) N
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And consider the corresponding Dynamic-1L program:

{check-1ambda x 'number 'number (check-appiy f x))

where f is type ert.
Now. our goal here is 1o come up with a method of implementing the check-1ambda operation. As a

general outline, it should proceed according to the following steps:

-
i

r

1. Evaluate the two type subexpressions. In this example, they are ‘number and ‘number. and
they simply evaluate to the type values number and number.

Al

:‘J

’
.".(

,-
2
)')

)
)

2. Decide on a suitable ERT binding for the formal parameter, and add this binding to the
environment. In our example. we must bind x to the proper ERT. and add this binding to
the environment. (An ERT binding for r will already be in the environment.)

¥l
o,

)

,'y
i

aes
f

3. Evaluate the body expression to an ERT in this new environment. In our example. we
must evaluate the check-apply to an ERT.

O
NS
AR

4 Using the ERT that resulted from evaluaung the body expression, construct and return
either a 1amoda ERT. if the body 1s ready o be evaluated to some basic non-ERT value 1n

the next phase: or a check-1ambda. If the bodv must evaluate to another ERT in the next
phase.

o
- 5

Y
’

L]
4%
e

>

Thus. in our example. the result of step 3 will either be an app)y ERT (if the body 1s read\ to

cvajuatc 10 a number). such as the following (call this errA):

| |

(4
(apply T a) . Expression I
((f {(fun number number);; . Regquired-environment :‘Q
numbe . Type I~ s
&)

«r s cnece-spply ERT 0of the hody must sull eraluate 1o another ERTH «uch as e following (call thas

crtf)
ertB
‘ehecx-apply f x. . txpression
{7 ert . Pegqu -ed-envirunmenr? Sa
ert . Type K

lhe Tipe component of err4 indicates that i i reads 1o evaluale to o ~umber whereas the Tape

component of err B indicates that it will evaluate o wnother FERT




Finally, the result of evaluating the check-1ambda (i.e. the result of step 4) should either be a 1ampoa

ERT., such as the following (call this ert/):

( . ert]
(1ambde x (apply f x))
((f (fun number number)))
(fun number number)

. Expression
. Required-environment

. Type

or it should be a check-1ambda ERT, such as the following (call this err2):

( . ert2
(check-lambda x (check-apply f x)) ; Expression
((f ort)) . Required-environment
ort . Type

That is, the result of step 4 should be ert/ if the result of step 3 is ert 4, whereas it should be ert2 1if the
result of step 3 is ertB. That much is straightforward. The difficulty is this: What ERT binding should

we provide for x in step 27

If the result of step 3 will be ertA, then we shouid supply a binding of x to the ERT (x (x number}
number) in step 2. since x the function can be applied 10 a number in the next phase. and hence x wil! be
bound 10 a number in the next phase. This binding. in effect, declares x 10 be type number in the next

phase.

On the other hand. if the resuit of step 3 will be ertB, then we should supply a binding of x to the
ERT «x.

and hence x must be bound to another ert in the next phase. This binding, in effect declares » to be

<x,ert>, ert> in step 2. since x another check-appi1y will be evaluated in the next phase.

1 pe ert in the aext phase.

Here 1s the dilemma. Since the result of evaluatng the body tn step 3 will in generai depend on

factors other than just the binding of x (1n this case 1t also depends on the binding of ¢ from outside).

. . ) ) R
we cannot generally know which binding for x to use 11 step 2 unul we know the result of step 2 RSN
..‘.A.‘ p
In our example, two potenual v alues for f that would cause different results would be the ERT: :,.‘.:
.
5

4 . Expression
((f (fun number number . ) kequireg-srvironment
(fun number number) . Type

. )
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and the ERT:
(
4 . Expression
((f ert)) . Required-environment
ert . Type

5.3.1. Evaluating the Body Twice

One way 1o deal with this dilemma might be to first assume that the check-1ambda’s body expression
will evaluate to an ERT that will be ready to be “fully” evaluated during the next phase; that is. first
assume that step 3 will evaluate to an ERT such as ert4, in which the Tvpe component is not ert.
Thus. we would initally bind x to the ERT <x,<x,number>.numper>. If the Type component of the
result of step 3 turns out to be a basic (no-ERT) type. such as ertA, then all 1s well, and the result of
check-1amboa should be a 1amboa ERT. such as ert/. However, if the Type component turns out to be
ert. such as i errB. then we bind x 10 the ERT <x.<x,ert> ert> and re-evaluate the body as in step 3

again.

5.3.2. Evaluating with Both Choices at Once

A more efficient soluuion might be to have the execution of €xXpryqq, SENETaLE the tvo ERTs. under
both assumpuoens. But what happens when funcuons are nested? Must 4, 8. etc.. ERTs be generated?

When can the choices he ehiminated”

5.3.3. Using an Extra Environment Variable

Since the difficully seems to be in deciding which binding to use for the formal parameier another
possihiiit. might be for the Dynamic-1L Machine to use an extra environment ranabie <hile a
chece-ampce hody 1s being executed. indicating the names of ans 1dentfiers that are hound as formal
parameters [hose identfiers could then be reated specially By the Dyvnamuc-IL Machine  This might
aiiow the hody o be evaluated 1n one pass. But notice. then. that the machine would essenually be
plaving the role of two disunct machines. depending on whether this eatra environment vanable were
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5.3.4. The Root of the Problem

The root of the problem is that we are asking the Dynamic-IL Machine to do two kinds of things
during the same phase: to partially and fully eialuare cenain subexpressions. and 10 compile certain

subexpressions for future partial or full evaluation. Section 5.4 proposes another solution.

5.4. A Strongly Typed Phase Compiler

A beuer approach t the problems of implementing check-1ambda in Dynamic-IL might be to

evaluate programs in two distinct passes: call the first pass phase compilation and the second pass phase -

evaluation. As before, phase evaluation would perform both partial and full evaluation. filling the roles

of traditional compiletime and runtime.

During phase compilation every expression would be treated symbolically: none of the
subexpressions would evaluate to a final (constant) value and no type checking would be done. The
purpose of phase compilation would be to decide which subexpressions can be fully evaluated and
which should be partially evaluated. The resulting program will have these decisions syntacticaily built
into 1t (as with 1ambaa. check-)ambda, elc.). ready for phase evaluation. To rr'.ake these decisions. the
phase compiler must know which of the program’s free variables are to be given final (constant) values

durning phase evaluation.

Phase evaluation could then fully evaluate some subexpressions and partially evaluate others. The
result of the phase evaluauon would either be some final constant or another program (ERT), but its
1ype would be known beforehand. The key to this approach is that the type of every expression 1§
known before phase evaluation. Thus. those expressions being fully evaluated can be evaluated just as
efficienty as on a convenuonal (ie. fully cvaluaung) abstract machine. even though the phase

evaluation machine 1s also performing parual evaluation for a strongly typed language.

This approach. for strongly typed larguages s anaivgous 10 the “compiied gencration” approach

used by Beckman. ct al. [Beckman 76] in paruaily evaluating LISP programs,
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Chapter 6 N

[

Remarks About Other Language Notions o

EAS

e

This section discusses some miscellaneous language notions, and shows how phases are relevant to :;:i
them or vice-versa. E:::
RO

6.1. Abstract Data Types R
~a

This section discusses one possible approach to providing Abstract Data Types (ADTs) under a k.;‘.
model of phases. The purpose of this section is to demonstrate some of the usefulness of manipulating ) .,-{r;
ERTs under a model of phases. The ERT data type makes it easy to talk clearly and sensibly about :_
compiletime notions such as enforcing the informauon hiding needed to implement ADTs. ::ﬁ;.
Ry

Our nouon of ADTs is intended to be ordinary -- corresponding basically 10 Ada packages, for :::i"‘
example -- but our view of implementing ADTs is somewhat unusual. and is mouvated by the fact that '____
we treat types and code (ERTs) as first-class values. That is. we intend to provide the same basic ; !

functionality of traditional ADTs, but we take an unusual view of what is required and how to provide 1%
it In effect this discussion treats ADTs from a compiler’s point of view. since phases fill the role of i
tradiucnal compile-time. .
P

We consider a newly defined ADT 1o be essenually a un:que type and a sc* of cperations that are , \,’
prinileged to vperate on values of that type. As in Ada. we assume that an ADT has no separate 'f;’

functiona! or behavioral specification: 1its intended behavior 15 defined only by 1ts implementauon =
Ihe programmer defines a new ADT in terms of other tipes and operaticus. thus supplving an ::f.
:mplemerntaton for it. The implementation should be *.dden from the user: this informauon hiding :“:
should be enforced by the language. ',?"
Since in a strongly tvped language. this information hiding must be enforced by the compiler. and :
there neea not be anyvthing special about the runume code. ADTs are e<senualiy compileume nouoens. tsfs
Under s model of phases. a phase fills the rule of compileume, manipulaung both tvpes and code :2'\'.
(ER 1<) o first-class values. Therefore. to understand the following discussion. it 18 best to think of 'iA
"~
‘ 84 ;& )
" ¥
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SN ) RN NI NN ONls T AT Enl el af ol



ADTs in terms of what a compiler must do to enforce the required information hiding. To focus only
on the essential elements, we do not address scoping rules or other extraneous issues such as providing

separate declarations of ADT headers and bodies. as is allowed in Ada.

6.1.1. Four Essential Functions

Let us personify the portion of the program that implements the ADT as the implementor. and the
portion of the program that uses the ADT as the user. To employ the canonical example. we might
define an ADT called stack, offering only push and pop functions for accessing values of tvpe stack.
and use an array to implement the stack.?’

of tvpe stack as an array is hidden from the user, but is available to the stack implementor.

The stack implementor, then, must be privileged to perform two essental acts: to create a value of
the ADT from a value of the implementing type. for example, creating a stack value from an array
value: and o view a vaiue of the ADT as a value of the implementing type. for example viewing a
stack value as an array. Less obviously. though, in a language in which tvpes are first-class values, the
implementor of the stack ADT must also be privileged to perform two additional essenual acts: to
create the type value stack from the implementing type value array: and 1o view the type value stach as

the type value array.

All four of these privileged acts ére compiletime sleights of hand™ - they are functions involiing
1vpes that are computed at compiletime. Recall that during “"compiletime” (a relauve term) tvpe and
ert values are manipulated. and that in our model a phase fills the role of wadiuonal compileume.
Thus. to create a stack ADT. we need the following four functions.

ahs-stack: ert — ent
For creating values of type stack from values of tvpe array. Note that this function
takes an ERT value and returns an ERT value -- 1t does not wake an array 1alue and
return a stack value. Rather. 1t takes an expression (an ERT) that will evaluate 10 an

© Usually a stack wouid be wmplemented %y 2 pair cons:sung of an array and an integer with Lhe integer representing a
pointes 1o the current stack top  This detail 1 1rrelevant here and we are :gnonng i for the sake of sasmphainy

TUPascal'c oed function € prohably the hert known eampie of 2 Teompricume sleight ol hand” Forone eiar e e od
funcuun relurns an integer representing the argument & L ofdinai value Ord1s aimost unnersalls implemented in the compiier
umph b viewing the binan representauon of s agument & a ralue of 2 different tipe  For example 1n a Pasca. svstem in
whieh the ASCII character set i used. the value of OFA('X") would be 88  Trat 1. the binan alue 1011000 « amph
interpreted as representing an :nteger (38) instead of representing the ASCII character X' Because the binan representations
of these vaiues are the same, the compiler does not emit an\ code W unplement the ord funcuon  Although the compuer would
view the expression ‘X as producing a value of tipe char and the expression 0rd(’X") as producine a value of = pe Integer
the code generated for these two e pressions would be absoluteis 1denucai

The compiler. then, must ensure that the implementauon

\

"
‘> ,‘\.
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array value, and returns an expression (an ERT) that will evaluate to a stack value.
Only the Type component of the argument ERT and the result ERT will differ.

imp-stack: ert — ert
For viewing values of type stack as values of type array. Again. this function takes
an expression (an ERT) that will evaluate to a stack and returns an expression that
will evaluate to an array.

type-abs-stack: type — type
For creating a stack type value from an array type value. Note that this is a function
that takes a type and returns a tvpe. The type value that is supphed as the actua
parameter must be an array type value; a stack type value will be returned.

type-imp-stack: type — type
For viewing stack type values as array tvpe values. Note that this 1s a function that
takes a type and returns a type. The tvpe value that 1s suppled as the actual
parameter must be a stack type value: an array type value will be returned. '

6.1.2. Type Values: <tag,value> Pairs

Let us now assume that type alues are represented as </ag.»alue> pairs.

The 1ag component 1s a ssymbol idenufiing the tipe: for exampie. 1t might be the ssmhel ‘arras

represenung any array Lvpe. 111 the same for even array tvpe.

™e a'ue component hoids other informaton abeut that parucular thvpe. for exampie 11 might
imciude information abou! the arras « element tipe and sive :f the size 1< a part o the Lupe as it s .r
Pascal. for example). The ulue compaonent will generalls be different for &ifferert urrav tipes P

~rogrammer-defined ADTC - wilt alwave he aine

6.1.3. Type-of and Tag-of

TUOIPTINI AL oDt hpes gnd ety shooc L Lt T dden tu L Soemane e one
compenent ctan FRT crtne Tag oomipenent tatipe tLosonatvperof and tagof Car se preaided

type-of ert — type

tag-of type — symbol

Irihe roprosentdtions P BER Teoang topes wett v = ¢ ese yndtions wouic be Sefit ed umph
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(type-of <o .r t> ) = t

(tag-of <t,v> ) = 1t

6.1.4. Implementations of the Four Essential Functions

The four essenual functions for a stack ADT can be roughly defined as follows. Bear in mind that
types type and ert should also be ADTs, and the programmer would not haie indiscriminate access to
their representauons. However. for expository purposes. the functions defined below show the
representauons of types as pairs and erts as wnipiets. (Error, below, represents a "compiletime” error
condition indicaung that the programmer tned to use one of these stack functions to convert between
something other than a stack and an array.)

(abs-stack <e,r Ct v>> ) =
it s ‘array
then <@.r <'stack (t.v,>> -- Save the implementing type.
else error

(imp-stack <@,r (t v>) ) =
if t = “stack
then <o, r v> -- Restore the implementing type
else error

{type-ads-stack <t v> ) =
WU s Carray
then < 'stack.<t vy, -- Save the implementing type.
e)se error

(type-mp-stack <@.r <t v>> ) =
it o« “stack
then v -- Restore the implementing type.
else error

I he relationships beta een these four functions are lustrated in Figure 6-1.

6.1.5. Defining a New Abstract Data Tvpe

To allow a new abstract data type to be defined. the language needs to supply a function that wil}
create and return the four functions described above. with a new uniguely generated tag embedded :n

them. The new tag shouuid aiso be retumed. to allow the progremmer (o test {01 this new tvpe withe u:

NCUIMINg 4n €rror.

. s
s
AR
PR
‘:\"ﬁs"\.\
A
a 8 3 B

I

s
»
[
.‘
T A

l"
g

,e
F) !.
. .l

Xy
oA
o4y

I‘f
5:;/:.

,
»

a % %

L
f\\
LI
L% )
A

o
> oy
. "-
N

»

.- ‘l -l 'l . .{
[P R A T‘{'.‘ l‘
MRS,

s
‘,"4,

ol
Y
A

.-
.\ 5
‘s

i
.

XXX

-

A '\I

'n"n s
1}

." \'

.
.f Py
A

AR RS
P
,.

h R )

1

»
‘s v

’
/,
(3

.
’
2,
SMOBND

T s
()

s
.'.s ‘. ', ‘l L )
f, : ../"l' B
LA

2 Ty
0 P2

.
L]

Uy

Ll
-
4
.

. ’
A
. "

RS

e

AL
‘e N .
L,\.'\I

Cp e
PROAPRINS

»

i
’







4,:?& u

thua |
CAdda oy
B EEEPI: =__

EE|

" IIIII

| ‘umg B

e e L e T




Figure 6-1:
Implementing Abstract Data Types

Abstraction Implementation

type-abs-stack

<

< stack, <array, v> > < array, v >
type-imp-stack
Types
(represented as
<tag,value> )

abs-stack

-

< e, r, <stack,<array, v>> > <e,r <array, v> >
imp-stack
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o
6.2. Dependent Types 3:;%
D

Dependent types, for example, of Pebble {Burstal! 84]. are compound tvpes in which the type of one prrad
element depends on the value of another element. For example, in Pebble a dependent type is used to BaSyy

express the type of a polymorphic pair-swapping function:

Ve
.’
™~
- -
e )

-—{_v
AR
e

(t1:type X t2:type) — > (t1Xt2 — t2Xt1)

b _.;j:[

The symbol "—>" is similar to "—" except that bound variables appear on the left and may be used

on the right to refer to their values. This polymorphic swapping function is actually a function that

&
E.\E
e

returns a function: it is first given the types of the elements to swap, and the result is then a swapping
function, specific to those types, that may be applied to an actual pair of elements. It swaps and remumns
the first and second elements of the pair. Thus, for example, if we wish to swap [int, bool] pairs,
returning [bool, int] pairs, instantiating swap for these types would yield a function value of type
intXbool — boolXint:

swap[int.bool]: intXbool - boolXint

Dependent types seem to have arisen mainly from the desire to assign sensible types to all
expressions, yet also be able to parameterize something by a type, such as a polymorphic function;

manipulate type-tagged values at runtime; and define recursive types. !

Rz
2

Phi does not offer dependent types, but some of the same functionality could be obtained in other

|

wavs, as described below.

A
g; AR
'.v g 4'

In Suatic-Phi. arbitrary type expressions can be evaluated at compiletime. and polymorphic functions ; "(' :
or data structures can be instantiated to particular types. In Pebble [Burstall 84), one is unable to talk ; ‘;'.‘
about a function’s actual parameter without dealing with the parameter’s runtime value. But in Static- OACAY:
Phi. a function’s actual parameter is an ERT value during the phase before the function is applied, so ,-\.-_.
the Type component can meaningfully be extracted and used at that time. This also means that a -'::':;:
polvmorphic function need not have an extra explicit type parameter. '; .

Dependent types also allow type-tagged values to be manipulated at runtime, and this may be a
desirable capability to provide. This can be accomplished by providing a type any -- a variable of type
any could hold a value of any other tyvpe. tagged with the value's type. A case conformity clause can be

used 10 query the variable's current tvpe and access its value while retaining strong tyvping. (This is

- .,~ ~y ., ¥y " -. ~ LR -.-5 AT ,g\w\r‘ S e (T n‘.. .f_f.\-,_f «, 1‘.‘0‘.-\{ o* -,'..-‘-F -\
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essentially the way Algol-68 [Lindsey 71] provides union types.) Note that the current work of Gifford,
Schooler. et al. [Schooler 84] takes a very attractive approach 1o this: where possible, they do type
checking before runtime; if a type cannot be determined before runtime. dvnamic type checking is
used. '

Recursive types are discussed in Section 7.2.7.

6.3. Type Checking Recursive Functions

The question usually arises: "Is there any special difficulty in type checking recursive functions?"
Not when the function’s parameter and return types are declared. In fact, the type checking is very

similar to the non-recursive case, even when types are allowed as first-class values.

The idea of a recursive function is that the function’s name can be used inside the function body.
The only impact this has on type checking is that the function’s type mus: be known inside the body.
This is easy to arrange. because the function's type is known from parameter and return type

declarations.

Compare the tvpe checking required for a non-recursive let construct versus a recursive letrec

construct. The two constructs would be:

let id: eXPr, ne = €XPTya1ue in expr, oy

letrec id eXPTyvoe = EXPTyatue in eXPTy oay

In each case. expry oq gives the type of the bound variable id. Call this tvpe 1. The only difference in

tvpe checking the two constructs is that in type checking expr for letrec. id is known to be tvpe «.

value
rather than whatever type it may have been declared to be in the surrounding scope. This is true even

e )
if the function happens to construct a type value.™

¢ IJ’?

W s Ll
]

3 . R )
A mentioned 1n Seciion 33 2 the rype thal 1 constructed Gn be used as an invariant of the next phase (i.e. 1t can be used 1n
a declaraiion periaining to the next phase) bui it cannot be used as an invanant of the phase dunng which it 1s computed
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Conclusions and Future Work
LBy 3 i
. ‘- 1 )
71.1. Conclusions 3
*.,.: z
. . . . et
This work has addressed the basic question of whether types and code can be manipulated as
first-class values while retaining strong typing. We demonstrated how this can be done by introducing gL
-
the notion of multiple strongly typed evaluation phases. In the simplest case, two phases correspond to :
the traditional notions of compiletime and runtime, though a single machine is used for both. In ot
. g _as . t‘fu’,'
general, multiple phases may be used, and each phase acts as compiletime relative to the next phase. or =
runtime relatve to the previous phase. Types that are freely manipulated as first-class values during : ~
one phase become invariants of the next phase, thus guarameeing that the next phase is strongly typed. : :
4
W
One benefit of allowing types and code to be manipulated as first-class values under the model of We
phases is that the same abstract machine can be used to both compile and run the program. This 2 X
L
means that all of the features that are available in the language at runtime are also available at A
AT
compiletime. The features only need to be implemented once in the single machine, and theyv are thus "y
guaranteed to have the same semantics at compiletime and runtime. Thus. for example. constant
expressions can be evaluated at compiletime using the same efficient evaluation mechanism as is used :4 "
at runtime. whereas. in general. a conventional compiler must simulate the action of the runtime ::;\;
gy A
machine in evaluating constant expressions. The single machine is therefore inherently “efficient” in -:;’
1wo respects: (1) for runtime operations. it can have the same efficiency as a conventional machine in ot
cvaluating untyped lambda calculus expressions. even though it has the additional capability of o
NN
performing compiletime operations; and (2) for compiletime operations it can be much more efficient :‘:.‘\-‘;
_ . ol
than a conventional compiler. because compiletime tasks that can already be performed at runtime. .
1
» .'
such as evaluating constant expressions. are executed directly rather than being simulated.
ey
The special abstract data type ERT is essential to constructing and manipulating code fragments as $.j,
. . . , L N,
first-class values. while capturing all information necessary to ensure that any code generated in this :4-‘
: ) , e
manner will be strongly typed. The ERT data type makes it possible 1o use the same abstract machine A
to do the compiletime operations of type checking and code generation. as well as conventional e
KA ¢
:1.:-#.
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runtime operations. The ERT data type also makes it easy to talk sensibly about compiletime notions :
such as asking for the type of an expression, or dealing with the type conversions involved in ?
implementing abstract data types. —
%

The notion of phases, with its ERT data type and uniform treatment of compiletime and runtime, "‘:

gives insight into the semantic processing that occurs during compiletime and runtime. It also gives '
insight into how to efficiently implement compiletime notions such as type checking, using runtime i

machinery, and how to efficiently provide runtime notions at compiletime. 4
23
We Dbelieve that the notions of strong typing, types as first-class values, and partial or phase i %
evaluation complement each other handsomely in providing a language basis for writing more
reusable, correct. and efficient software: “reusable” because types can be manipulated as first-class "2_.;2
values, and because of the ability to construct new strongly-typed programs with phases or spec'ialize &, ¢
programs with partial evaluation; “correct” because of strong typing; and “efficient” because of the y .'.:ﬂ:
ability 1o perform much of the computation before runtime. )
e
The following sections outline some suggested future work. ‘,::
7.2. Subjects for Further Study >
7.2.1. Developing a Practical Language Based on Static-Phi and Static-IL ES o
o)
The particular model of phases embodied in the Static-Phi and Static-IL languages of Chapter 4 are
based on typed and untyped versions of the lambda calculus, and were presented as purely pedagogical \‘\
languages. It would be reasonably straightforward to expand these into useful real-life functional :z N
languages with a full complement of data types and operators. E‘.
Yy, 0

7.2.2. Using Phases for Partial Evaluation

This was discussed in Chapter 5.
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7.2.3. Constructing and Maintaining Environments

More work is needed on how to effectively generate and manipulate the environment required for

each phase. This comes in the larger context of programming methodology.

7.2.4. Determining the Source of a Bug

Suppose a bug is discovered. Where did it originate? During what phase? To some extent, the
difficulty of determining the origin of a bug becomes inherently more difficult with more reusable
software. in the following sense. When a program is constructed from several pieces of different
origins, it may be more difficult to know which piece of the program is at fault when a bug is
discovered. On the other hand, if a standard set of reusable software components are provided, they
can be very thoroughly debugged. Overall, we do not know whether multiple phases will make
debugging significantly more or less difficult.

7.2.5. Universal Polymorphism

A function is polymorphic if different parameter types may be used in different invocations. Burstall
and Lampson [Burstall 84} distinguish between two kinds of polymorphism (attributing the distinction
to C. Strachey [Strachey 67]):

Ad hoc [or Generic] polymorphism
The code executed depends on the type of the argument, e.g., 'print 3’

e

involves different code from ‘print "nonsense™'.

Universal [or Parametric] polymorphism
The same code is executed regardless of the type of the argument.
since the different types of data have uniform representation. e.g.
reverse(1,2.3,4) and reverseftrue. false false).

Ad hoc polymorphism is the natural form of polymorphism under phases. Universal polvmorphism
secems lo require something additional. The basic difficulty is that. in tvpe checking the call of a
universally polymorphic function, such as reverse (above), different result types should be returned for

calls using different actual parameter types. even though the same function will be called at runtime.

Furthermore. a mechanism for type checking the function body once. independent of call tvpes. should .

be provided.

L4

ML [Gordon 79] uses unification in tyvpe checking polymorphic functions. Unification involies
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having the language processor perform substantial computations involving types. This applrou;h might
be used here. although it would seem to be somewhat contrary to the underlying philosophy of having
types of expressions simply computed rather than inferred by a more complex language processor. it
would be most atiractive to use an approach that takes advantage of a language’'s existing ability to
explicitly manipulate types as first-class values, as the Static-Phi language does. rather than adding type
inference machinery to the language processor. We do not know how best to do this.

7.2.6. Inferring Types

As explained in Section 1.3.1, this work was motivated by a bias toward expressing rather than
inferring. However, much notable work on data types. such as ML [Gordon 79] has involved type
inference. It would be good to explore the relationship between type inference systems and our model

of multiple phases, which is based on types being computed directly. Mavbe a hvbrid woul-d be
feasible.

7.2.7. Recursive Types

A recursive type is a type defined in terms of itself. Recursive types are most often used in defining
lists. sequences. or trees of unbounded size. The problem of representing recursive types is similar t0
the problem of representing recursive function values or any other infinite structure. The basic
problem is how to represent the infinite structure in finite space and time while providing convenient
mechanisms for manipulating and comparing values of the infinite structure. There are several ways
recursive types might be implemented in Phi.

One way to represent recursise types might be to use a circular data structure to represent the tvpe.

Another approach to representing recursive tyvpes might be to use abstraction to delay the evaluation
of a recursine U pf:.30 Consider the following hypothetical tvpe definition:

letrec 1 = (list-of 1)
in ...

The list-of operation is intended to return a list nvpe for any given element tvpe The hypothetical
example above is intended to define a type / that is recursivelv a list of elements of tvpe 1. Some

exampie \alues of this type might be the empty list ;. or the list containing o empty lists ( (1()).

mRC.\ no'ds [Revnolds 85 for example. uses a special rectype operation. which 1 a kind of absiracuon muchamism. for
expressing recursinc iy pes
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Clearly. some kind of delay mechanism is needed to avoid going into an infinite loop in trying to Mool
(A 1

evaluate (list-of 9 in the example above.! Function abstraction generally provides a kind of quoting v
that delays evaluation of the function body until the function is invoked. rather than evaluating the Y -\;
body when the function value (closure) is created. '::‘ "‘l
Y

Now compare the following: At

V ¢, (element-type-of (list-of 1)) = ¢

Y ¢, (apply lambda () ) Q) = ¢

The list-of operation creates a list type where the elements must be type 7, and element-type-of returns a 4.': "'
list type’s element type. Note that these operations deal with iype values -- they do not create or N ¢
examine Jist values. Lambda (with an empty formal parameter list, in this case) creates a function &ﬁ
abstraction, and apply applies the function abstraction (to an empty actual parameter list, in this case), _ *
as in LISP [McCarthy 66]. The operation list-of is analogous to function abstraction, and the operation N :}
element-type-of is analogous to function application. . S&E" ,
The example above showed that there is an analogy between function abstraction and the kind of e
delay mechanism needed to allow recursive type definitions. Could function abstraction be used to N-.
implement recursive types? Certain type operations, such as list-of. might act as function abstractions. :'*"'
and one of these would have to enclose each appearance of the type name being recursively defined. ::'* :
(Note that this corresponds to the Algol-68 or Pascal rules for defining recursive types, in which an XY
intervening reference or pointer tvpe must be used in any recursive type definition.) Other type ::,j:_
operations. such as element-tyvpe-of. would act as function application. forcing the element type of the E\*i

list to be computed. just as function application causes the function body to be evaluated.

5

This approach has not been worked out for Phi. We do not know if it would be feasible or practical.
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3
']P Z. Ingerman’'s Thunk, used to implement call-b:-name parameter passing in Algol 60 is the classic example of a deiay
mechanism [Pratt 75]. Lazy evaluauon [Henderson 80] is another technique.
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7.2.8. ERT Subtypes

One unsatisfactory aspect of ERT triplets <gr.1> is that if the type component is ert (indicating that
the expression will evaluate to an ERT in the next phase), there is no further information about what
type of value might be computed in the following phase. In fact, the Static-IL construct deep-const
hides the types of constants until the phase before the constant will be used. thus preventing any
compiletime type errors regarding that constant from being detected earlier. It would certainly be
better to detect all errors as early as possible.

One way to support earlier error detection might be 1o introduce subtypes of the ert type that
provide some information about an expression’s final type, if known. Consider the following Static-Phi
program.

Ax:tl =1t2.(gx)

Recall from Section 3.3.4 that every subexpression starts out being type ert; thus the A expression
above will inidally be considered type ert. But regardless of what types t1 and t2 wrn out 10 be. it is
syntactically obvious that the above expression will eventually evaluate to some kind of function value.
Hence, it might be useful to initially consider the expression to be a type that is a subtype of ert. such as
“ert of fun", which carries more information than the simple ert type carries. Similarly, if tl and t2
happen to be type constants such, as number, an even more specific subtype might be returned, such as
"ert of <{fun number number>"”, which represents the 1ype of an expression that will become a function

from numbers to numbers in some future phase.

We do not know whether ERT subtypes wili provide the right practical mechanism far earlv error

detection. or whether some other approach would be better.

7.2.9. Statically Inferred Phases

In Static-Phi. phases are assigned statically by the Translator. based on emit and eval constructs
explicitly embedded in the Stauc-Phi program. To ease the programmer’s burden, it might be pessible
to have the Phi Translator automatically determine which subcomputations should be performed

dunng which phases. without requinng the programmer 10 designate them exphcitly.
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L 3 L] * . ‘:s‘l’,
Formal Semantics of Static-Phi and Static-IL -
"ZZ-:'l
Ru :
Introduction :Q ¢
XYl
This section gives a semantics for phase evaluation of Stauc-Phi expressions. The semantics of a ”3:"«
Static-Phi expression are given by two sets of semantic equations: one set of equations corresponds —
to translating the Static-Phi expression into a Static-IL expression (in the Expression component of :.: !
an ERT); the other set corresponds to evaluating a Static-IL expression. This is therefore an :::‘t:
operational semantics, though we write it in a denotational style using continuations. :-f::
E‘:
Static-Phi Syntax Domains —
id € ID -- Identifiers. i"\ o
b € BOOLEAN  -- Booleans. Jad
n € NUMBER -- Numbers. -i'-"'
LY o o
t € BTYPE -- Basic type constants. ———
e € EXPR -- Static-Phi expressions. A program is an EXPR. ;
39
. . .ft )
Static-Phi Syntax Equations RO
YA
ID = . . . -~ Identifiers.
BOOLEAN= true, faise -- Booleans. NG
\‘;\$
S,
NUMBER= 0, 1, 2, ... -- Numbers. Yot
Vi
BTYPE= boolean, number, type, ert A
-~ Basic (non-function) type constants. Ky
= %N
-., o
EXPR = ID ~- Identifier e
+ BOOLEAN -- Boolean constant ;:-;‘:
+ NUMBER -- Number constant ;-uf,-.
+ BTYPE -- Basic (non-function) type constant .
+ (funtype EXPR EXPR ) -~-- For expressing the types of functions
+ (emit EXPR ) -- Normal runtime phase is one phase later
+ (eval EXPR ) -- Normal runume phase s one phase earlier
+ A ID : EXPR — EXPR . EXPR -- Abstraction, with parameter, return types
+ ( EXPR EXPR ) -- Function application
Static-IL (Semantic) Domains
These domains are best interpreted as semantic domains, though they are someumes used as though
they were syntactic domains. The reason for this is to avoid having 10 deal with the cumbersome
101
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detail of two parallel domains -- one syntactic and one semantic -- and a trivial semantic

correspondence between them.

id € ID -- Identifiers. Same domain as in Static-Phi.

b € BOOLEAN ~- Booleans. Same domain as in Static-Phi.

m,n € NUMBER -~ Numbers. Same domain as in Static-Phi.

t € TYPE -- Types. Includes both basic types and function types.

r € RENV -~ Required-environment. Lists identifiers and their types.
e € EXPR -- Static-IL expressions. A program is an EXPR.

ert € ERT —- Triplet <o, r, t > @ is an expression, r is a list of

identifier-type pairs, and t is a type. We deal only with a
restricted set of ERT triplets, for which r lists all free
variables and their types in @, and e is guaranteed to
evaluate to a value of type t (or some error condition).

env € ENV -- Environments

v € EV -- Expressible values.

k € ECONT -~ Expression continuations.

err € ERROR -- "Compiletime” errors of various kinds.

Static-IL Domain Equations

D = ID -~ [dentifiers from Static-IL.
BOOLEAN = BOOLEAN -- Booleans from Static-IL.
NUMBER = NUMBER -- Numbers from Static-IL.

FTYPE = {fun} x TYPE x TYPE -- Function type: domain, range.

TYPE = BTYPE -~ Basic types,
+ FTYPE -- Function types.
RENV = (<>} -- Required-environment.
+ (1D x TYPE ) x RENV (Identifier, type pairs.) Note that

required-environments are represented
slightly differently in this appendix than in
the body of this work.
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EXPR = ID -- Static-IL expressions.
+ (quote EV )
+ (incr EXPR )
+ (check-funtype EXPR EXPR NUMBER )
+ (funtype EXPR EXPR )
+ (check-check-lambda ID EXPR EXPR EXPR NUMBER )
+ (check-lambda ID EXPR EXPR EXPR )
+ (lambda 1D EXPR )
+ (check-apply EXPR EXPR )
+ (apply EXPR EXPR )
+ (deep-const EV TYPE NUMBER )

ERT = EXPR x RENV x TYPE -- ERT triplet. Free variables of EXPR are
listed in RENV with their types. EXPR
evaluates to a value of type TYPE.

CLOSURE = ID x EXPR x ENV -- Function closures

EV = BOOLEAN -~ Expressible values

+ NUMBER
+ TYPE
+ ERT
+ CLOSURE
ENV =10 — EV -- An environment is a function from
identifiers to expressible values. Note that
environments are represented slightly
differently in this appendix than in the
body of this work.
ECONT = EV — [ EV + ERROR ] -- An expression continuation.
ERRCR = { error-non-type, - "Compiletime™ errors possible.
error-non-function,

error-inconsistent-req-envs,
error-type-mismatch,
error-different-type-used-in-body,
error-ert-expected,

error-non-ert,
error-body-is-not-ert,
error-body-and-range-types-differ,
error-arg-ready-before-function |}

Meta-Language Notation

The translation rules and semantic equations will use a meta-language including if, where, let and
maximum constructs. They are written in this font. Comments on a line are preceded by "--"

Tuples are written, for example, as "<a, b>". Function application is written. for example, as " (f
x)". The continuation-style operator ";" also denotes funcuion application, but it is right associative
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and binds weakly. Thus, "f; g: x” means " (f (g x))". The body of a lambda abstraction "N X
extends as far to the right as possible.

We use the operators "+ and "-" to concatenate two Required-environments, and to remove all
occurrences of an identifier from a Required-environment. We use the notation env(v/id] to
denote the environment env augmented by the binding of v to id. (Remember that a
" Required-environment™ is not the same as an "environment”!) More formally, we can recursively
define these operations:

M+r22 it =
then r2

else let <<idt ti>,r1'> =r1

in <<idl t1>, rt’ +r2>

r-idg ifr=< thenr
else let <<id1,ti>r'>=r
in ifid! = id thenr' - id
else <<idi.ti>, r' - id>

A
env(v/id] = A id1 . if id1 = id then v else env(id1)

[ IR

(Note that the equality "=" used here between identifiers is true iff the two identifiers are same
identifier —— it has nothing to do with the values of those identifiers.)

Translating from Static-Phi to Static-IL

A Static-Phi expression is not evaluated directly. Instead, it is first translated to a corresponding
Static-IL expression (contained in an ERT), which is in turn evaluated through one or more phases.

The function Trans-count is applied to the Static~Phi program and produces the Static-IL
translation by calling auxiliary functions Trans and Count. These functions have the following tvpes:

g

LR Aol g
v

Trans-count: EXPR — ERT
Count: EXPR X NUMBER — NUMBER
Trans: EXPR X NUMBER — ERT

The TYPE component of the ERT that Trans or Trans-count returns will always be ert, the EXPR
component will be the Static-IL expression corresponding to EXPR, and the RENV component will
list all the free variables appearing in that EXPR component. Each variable is inually type ert.
Trans-count is simply defined as follows:

Trans-count[ e | = Trans{ e, Count[ e, 0] ]

Function Count is used to count the depth of the minimum number of phases required, and Trans
does the real translation work. These functions are defined below.
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Auxiliary Function ’Count”

Function Count actually counts a depth, which may be positive or negative, rather than the number
of phases required. The parameter n represents the current normal runtime phase -- the number
of phases before some arbitrary phase 0. Thus, a more positive n indicates an earlier phase, and a
less positive (or negative) n indicates a later phase. Thus, this numbering is the opposite from
phase numbering used in previous chapters of this work. The reason for this is that in translation
and phase evaluation the emphasis is on the number of phases required, rather than the number of
phases that have already been performed. The following rules define Count.

Count{ id, n ) = n

An identifier does not need any extra type checking phases.
Count{ b, n ] = n+l

Count{ m, n ] = n+l

Count[ ¢, n ] = n+l

Constants need only one extra phase for type checking.

Count{ (funtype el e2), n ] =
Maximum{ n+1, Count(el.n], Count{e2,n] }

The funtype construct itself needs one extra phase for type checking, but the subexpressions may
need more, so we take the maximum.

Count(N id : el —we2 . e3, n] =
Maximum{n+2, Count(el.n+1l). Count(e2,n+1}, Count(e3.n}}

The A construct requires two extra phases: one to type check the function itself. and one to check
the types of the domain and return type expressions. Of course, the subexpressions may need more.
so, as with funtype, we take the maximum. Also note that subexpressions el and e2 are
implicitly inside an eval; hence the "n+1"s.

Count{ (el e2), n ] =
Maximum{ n+1, Count{el,n], Count(e2.n] }

Function application itself needs one extra phase for type checking, but the subexpressions may
need more, so again we take the maximum.

Count[ (emit e), n ) = Count[ e, n-1 ]

The emit construct is not a runtime nouon at all. The number of phases required just depends on
the subexpression, but note that its normal runtime phase will one phase later. Trans will take that
into account during translation, so we anticipate it here by subtracting one from the current depth.
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Count{ (eval e}, n ] = Count[ e, n+l ] $ :
~
The inverse of emit. L ,:
“y
Translation Rules N
e
it
Trans{ id, n ] = < id, << id, ert >, <>>, ert > -~ Identifiers -;':
t
A
Each identifier is initially type ert. The EXPR component is simply the identifier, hence the ,:
required-environment only lists this one identifier of type ert as the free variables appearing in it. n
)
Trans[b, n ]| =< @, <, ot >, -- Boolean constants a~
where @ € EXPR = (deep-const b boolean n-1) ;:':}
¥
A constant is translated to an ERT in which the EXPR component is a deep-const expression. e
There are no free variables in it; hence the required-environment component of the returned ERT 15 -
empty. ! ’,.:
o
Trans([m, n ]| =< @, <, ort >, -- Number constants s‘:.:
where @ € EXPR = (deep-const m number n-1) .:,é»
o3 0
Similar to boolean constants.
-"\
Trans{ t, n ] =< @, <, ort >, -- Basic type constants ::
K
where @ € EXPR = (deep-const t type n-1) E:
heY

Similar to boolean constants.

n

Trans[ (funtype el e2 ), n ] = -~ Types of functions ::“
let <eot1',rl, ort>€ ERT = Trans( el. n ], :';:."

< 82", r2, ort > € ERT = Trans{ e2, n | e
in < (check-funtype e1' 82’ n-1 ), (r1 + r2), ert > -':..

The subexpressions are translated to ERT's, and their RENV (required-environment) and EXPR b
components are combined to form the resulting ERT. The expression components simply become :‘\, ',
the subexpressions of a check-funtype expression -- they will evaluate to ERTs in the first Y ’

evaluation phase. The required-environments are simply concatenated because the free vanables ot ::
the whole check-funtype expression are simply the free variables of the subexpressions @1’ and o)
82’. All variables are type ort in the first phase. e
']

Trans[ N id : el — e2 . e3, njl= -- Abstraction

let <eo1',r1, ort > € ERT = Trans( el, n-1 ], %
< @2, r2, ert > € ERT = Trans[ e2, n-1 }. :"-:"
<083, rd, ert > € ERT = Trans( e3. n | -
in < W]
(check-check-lambda id e!' e2° 3’ n-2), £

(F1 + (r2 + (r3 - id))). L/
]
, " &
3
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The subexpressions are translated to ERTs, then combined to form the resulting ERT.
Subexpressions el and e2. which give the function’s domain and range types, are inside an implied
eval; hence they are translated so that the function’s domain and range types will be computed one
phase before the function value (closure) is computed. The EXPR component of the resulting ERT
simply uses the original bound variable. id, and the EXPR components from translating the
subexpressions to form the check-check-lambda expression. The required-environments are
combined, but since id is a locally bound variable inside the body expression @3’, it is removed
from r3 before being combined with r1 and r2. However, id is not locally bound in @1’ or 82’ (1e.
@1’ and @2’ are in an outer scope) so it is not removed from r1 or r2.

Trans( ( el e2 ), nls=s -- Function application
let <el',rl, ert>¢€ ERT = Trans{ e1, n ].
<e2',r2, et > € ERT = Trans[ €2, n |
in < (check-apply @1’ @2’ ), (r1 +r2), ert >

The subexpressions are translated and combined to form the resulting check-apply ERT.

Phase Evaluation

We now define a function, Pheval, that evaluates a Static-IL expression relative to some
environment @nv. Pheval has the following type:

Pheval: EXPR — ENV — ECONT — [ EV + ERROR |, or equivalently:
Pheval: EXPR — ENV — [ EV — [ EV + ERROR ]] — [ EV + ERROR ].

The environment env is a function, with the following type:

env : ENV = ID — EV

Pheval uses two auxiliary functions: Funtype? and Consistent?. Funtype? is used on TYPEs. It is
true for functional types, i.e. types of the form <fun t1, t2>, for some types t1 and t2. It is not
defined here, but has the following type:

Funtype?: TYPE — BOOLEAN

Auwaliary funcuon Consistent? checks whether the types of identifiers in two required-environments
are consistent. In other words, for each identifier and type <id.t> in the first required-environment,
Consistent? checks every idenufier-type pair <id’,t'> in the second required-environment. and
returns false if two 1dentifiers id and id’ match but their types t and t* differ. Otherwise it returns
true. Consistent? has the following type:

Consistent?: RENV x RENV —» BOOLEAN

Formally, Consistent? can be recursively defined as follows.
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Consistent?( r1, 12 ) 2
ifri=corr2 =<
then true
else let <<id1,t1>, r1'> € RENV = r1,
<<id2,t2>, r2'> € RENV = r2
in ifid! = id! and t1 9 t2
then false
else Consistent?( r1', r2 ) and Consistent?( r1, r2’ )

-

Phase Evaluation Semantic Rules
Pheval[ id ] (env) (k) = k{env(id)} -- Identifier

The value of the identifier is simply retrieved from the environment. For at least the first phase after
translation, the identifier is guaranteed to evaluate to an ERT. In a subsequent phase, it may
evaluate to a value of some other type.

Pheval[ (quote v ) ]| (env) (k) = k(v) -- Quoted value
A quoted value is simply returned as is. Quoted values may be of various types.

Pheval( (incr @ ) J(env) (k) = -- Increment (add 1)
Pheval[ @ ] (env);
A v EEV. k(vel)

The subexpression is evaluated (it will be a number), and the resulting value plus one is passed on to
the continuation.

Pheval[ (check-funtype e1 €2 n ) ]J(env)(k) = --For function type
Pheval{ o1 | (env);
A <el’, r1, t1 > € ERT . Pheval[ 82 ] (env);
A <@2', 12 12 >¢ ERT .
if Consistent?( r1, r2 )
then ifn>0
then if t1 = ert and t2 = ert
then k(<(check-funtype e1' @2’ n-1), r1+r2, ert>)
else error-ert-expected -- Needed an ERT.
else if t1 = type and t2 = type
then k( < (funtype 81’ 02' ), r1+r2. type> )
else else error-non-type -~ Needed type.
else error-inconsistent-reqg-envs

Excluding errors, check-funtype always evaluates to an ERT, passing it on to the expression
continuation. The purpose of check-funtype is to generate a funtype expression whose
subexpressions are guaranteed to evaluate to TYPE's. In contrast with funtype, the subexpressions
of check-funtype evaluate to ERTs.

Subexpressions @1 and @2 are first evaluated: they evaluate to intermediate ERTs. These
intermediate ERTs will be combined to form the resulting ERT, whose expression component will
either be a check-funtype or a funtype EXPR. The required-environment components of the
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intermediate ERTs must be consistent, since they will be concatenated to form the
required-environment of the resulting ERT. The phase depth n determines whether a
check-funtype or a funtype expression is to be generated. If n>0. we still have one or more phases
to go before we should generate a check-funtype expression, so the subexpressions must evaluate
to ERTs; otherwise (when n=0), we must generate a funtype expression, and its subexpressions must
evaluate to TYPEs.

Pheval( (funtype a1 €2 ) ](env) (k) = --Function type
Pheval( o1 |(env);
A t1 € TYPE . Phevall 2 ](env);
At2€ TYPE . k( <funt1, t2 >) -- t1 is domain; t2 is range.

Excluding errors, funtype always evaluates to a TYRE. In contrast with check-funtype, funtype’s
subexpressions both evaluate to TYPEs. The final result will be a function type, containing the types
of the function's domain and range, obtained from evaluating subexpressions @1 and e2.

Pheval| (check-check-lambda id e1 82 83 n ) |(env) (k) =
Pheval[ o1 ] (env);
N <el’, r1, t1> € ERT . Pheval[ 82 ]J(env);
A <e2', r2, 12> € ERT . Pheval| @3 ] (env[<id,<<id.ert> <>>,ort>/id]);
A <e3’, r3, t3> € ERT .,
if Consistent?( r1, r2 )
then if Consistent?(<<id,ert>,<>>,r3) and Consistent?(r1+r2,(r3-id))
then if t3 = ert
then ifn>0
then if t1 = ert and t2 = ert
then let e=(check-check-lambda id e1’

e2' @3’ n-1)
ink(<e, (r1+r2+(r3-id)), ert > )
else error-non-ert -- Needed ERT

else if t1 = type and t2 = type
then let e=(check-lambda id o1’ @2’ e3' )
ink(<e, (rt+r2+(r3-id)). ort > )
else else error-non-type
-= Not a type expr
else error-body-is-not-ert -- Body should be ERT
else error-different-type-used-in-body
-- Clash of used/expected tyvpes
else error-inconsistent-req-envs

Excluding errors. check-check-lambda always evaluates to an ERT and passes it on to the
expression continuation. The purpose of check-check-lambda s to generate a check-lambda
whose first two subexpressions are guaranteed to evaluate to values of type TYPE. I[n contrast to
check-lambda, all of check-check-lambda's subexpressions evaluate to ERT's.

Bound variable id is local to subexpression @3 (63 is 1n a new scope). and will be bound to an ERT
within €3, whereas subexpressions 81 and @2 are considered t0 be in some outer scope. We first
evaluate @1 and @2 in the outer environment, and then evaluate 3 in an environment in which the
bound variable id is bound to the following ERT: <id.<<id,ert>,<>>.ert>. The expression
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component is simply the identifier, and it will evaluate to an ERT; hence the type component is ert. iKY ”
and the only free variable listed in the required-environment component is the identifier itself. In :‘
effect. this declares instances of id alreadv appearing in the body to be type ERT. (New instances "
may be introduced, however, when subexpressions evaluate to ERTs, as with macro expansion.) —
A
The first Consistent? test ensures that any variables used in the domain and range subexpressions are '
the same types. The second and third Consistent? tests ensure that the body expects the formal ‘:.l ’
parameter to be type ert and that any other free variables appearing in the body have the same tvpes ::,:;:
as they do in the domain and range subexpressions. These tests are necessary because =L
subexpressions that evaluate to ERT’s can introduce new references to bound variables. \‘
A
If the phase depth n>0, we have to generate another check-check-lambda, in which case the hs
domain and range subexpressions must again evaluate to ERTs; otherwise, we generate a : o
check-lambda and the domain and range subexpressions must evaluate to TYPEs. g
Pheval| (check-lambda id e1 82 e3 ) |(env)(k) = -- el, e2 will be TYPEs X
Pheval( el |(env): e
v
A t1 € TYPE . Phevall o2 }(env); oy
. . . .
A t2 € TYPE . Pheval[ @3 ](env[ <t1,<<id,t1>,<>>,id> / id }); \.$
A <13, r3, 3 > € ERT .
if Consistent( <<id,t1>,<>>,id>, r3 ) e
then if t2 =13 o
then k( < (lambda id . 83’ ), r3 - id, <fun t1 12 > > ) Nod
else error-body-and-range-types-differ e,
else error-different-type-used-in-body ¢
-- id has different type ‘' body =
>
Excluding errors, check-lambda always evaluates to an ERT. Its purpose is to generate a lambda :“',
expression whose body expects the formal parameter to be the type declared for it. ':::
A
Type subexpressions @1 and e2 are evaluated to types t1 and t2, then body subexpression 83 is "'l‘:: ]
evaluated to an ERT in an environment that includes a binding of the formal parameter id to the ERT *
<1,<<id.t>,<>>,id>. [n effect, this declares existing instances of id in the body to be tvpe t. The 5 ,,.
Consistent? test 1s used to verify that a new instance of the formal parameter with a different type ,'.\"&
YN
has not been injected into the body expression (as can happen with macro expansion). Finally, the ; :\
body type must agree with the function’s declared range type. NN
N
Pheval] (lambda id . @ ) J(env)(k) = k( < id, @, env > ) -- Create a closure. .
LA
N
This s a function abstraction. To implement lexical scoping, a closure of the bound ‘ariable. -:a:'
expression body. and current environment is created and returned. ',‘;:‘
v
L,
2o
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Pheval{ (check-apply o1 62 ) ] (env)(k) = -- @1 and @2 will be ert’s
Pheval| o1 ) (env);
A <el', r1, t1 > € ERT . Pheval( @2 ] (env);
A <@2',r2, t2>¢€ ERT .
if Consistent?( rt, r2 )
then if Funtype?( t1 )
then let <fun t11, t12 > € FTYPE = t! —- Domain, range
in ift11 =12
then k( < (apply 81’ €2' ), r1+r2, t12>)
else error-type-mismatch
-~ Formal-actual type mismatch
else if t1 = ert
then if t2 = ert
then k{ <(check-apply 81' @2’ ), ri+r2, ert>)
else error-arg-ready-before-function
else srror-non-function -- Not function or ert
else error-inconsistent-req-envs

Excluding errors, check-apply will always evaluate to an ERT. Its purpose is to generate an apply
expression that has been tvpe checked to guarantee that the first argument will evaluate 0 a
function, and the second argument will evaluate to the type declared for the funcuon’s formal
parameter. In contrast with apply, the subexpressions of check~apply both evaluate to ERTs.

Subexpressions @1 and @2 are evaluated to ERTs, and the required-environments of these ERTs must
be consistent; they are checked as in previous cases. [f t1 is a funcuon type. the funcuon
subexpression @1° will evaluate to a function to be applied to the actual parameter in the next phase:
hence the type of the actual parameter must match the function’s declared formal parameter tipe.
and an apply ERT will be generated. Otherwise. t1 should be ert. indicating that the funcuon
subexpression will again evaluate to an ERT during the next phase. [n this case, t2 should al<o be eort
(1ndicating that the argument subexpression will also evaluate to an ERT), and another check-apply
will be generated. At this point, 1t 1s an error if t2 isn't ert, since this means that the argument 1$
ready to evaluate to some fixed, non-ERT value before the function expression ts ready to esaluate
to a function value.

Pheval| (apply @1 @2 ) | (env) (k) =
Pheval[ o1 |(env);

A <d, @ env' > € CLOSURE . Pheval( 02 ](env);
A v € EV . Pheral[ @ |(env'[v/id]) (k)

--Function applicauon

Normal funcuon apphicatton. Subexpression @1 15 guaranteed to evaluate to a funcuon closure. und

82 evaluates to the actual parameter, the type of which 1s guaranteed to be the domain tvpe of the
function.

Proving That No Runtime Type Errors Are Possible

This section briefly briefly sketches how to approach proving the assertion that runume type errors
are not possible 1n Stauc-IL. The more specific assertion is that every ERT generated by this system
1s valid. (This will be clarified below.) Overall, the proof i1s by induction on the number of phases
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used to produce the ERT. The basis is zero phases, when the ERT is produced directly by the
Translator. Both the base case and the induction step are, in turn, proved using structural inducuon
on the original Static-Phi program or the Static-IL Expression component of the ERT.

First off, we must define what we mean by "runtime type error” in order 1o show that such errors
are not possible. The easiest way to do this is probably to add an explicit type tag to the values that
are manipulated by Static-IL programs, and then to define runtime type errors in terms of these
type tags. :

Next we must specifically define what it means for an environment to sarsfy a
Required-environment. The environment must supply bindings of the proper types for all of the
identifiers listed in the Required-environment.

Now, we really want to prose that every ERT produced by this system is "valid™. so we must define
“valid”. Basically, an ERT <e,r,t> is valid f, in an environment that satisfies the
Required-environment r, @ is guaranteed to evaluate to a value of type t (or to some compile-time
error value) without incurring any runtime type errors.

With the proper definitions in order, the proof would proceed by inducuon on the number of phases
used to produce the ERT.

Basis. The basis is when zero phases were used to produce the ERT, that is, we must first show that
the translator always produces a valid ERT. This part would be done using structural induction on
the original Static-Ph: program. The most important thing to note tn this part s that the result of the
Count functuion used in translauon ts completely irrelevant to the proof. The n parameter used by
several of the Stauc-IL constructs to determine how many phases to wait, has no bearing on the tvpe
correctness of the system.

[nductive hypotheses. Next, we consider any valid ERT <e.r.t>, and any environment env that
satisfies the required environment r. Thus, the basic inducuve hypothesis 1s that <e.r.t>1s valid and
that the environment env sausfies the Required-environment r. But furthermore. we must construct
the nght hypothesis on the environment to ensure that no Trojan horse runtime tyvpe errors can
sneak in through the environment. Every ERT value that comes from the environment must be
valid. and every funcuon that comes from the environment must be assured to execute without
runume type errors.

[nduction. We must now prove that if t=ert then Pheva/[@] (env) (Av.v) 1s either a valid ERT or one
of the compiletime error values. This would proceed by structural induction on @
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